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a b s t r a c t

Color is the most informative low-level feature and might convey tremendous saliency
information of a given image. Unfortunately, color feature is seldom fully exploited in the
previous saliency models. Motivated by the three basic disciplines of a salient object
which are respectively center distribution prior, high color contrast to surroundings and
compact color distribution, in this paper, we design a comprehensive salient object
detection system which takes the advantages of color contrast together with color
distribution and outputs high quality saliency maps. The overall procedure flow of our
unified framework contains superpixel pre-segmentation, color contrast and color
distribution computation, combination, and final refinement.

In color contrast saliency computation, we calculate center-surrounded color contrast
and then employ the distribution prior in order to select correct color components.
A global saliency smoothing procedure that is based on superpixel regions is introduced
as well. This processing step preferably alleviates the saliency distortion problem, leading
to the entire object being highlighted uniformly. Finally, a saliency refinement approach
is adopted to eliminate artifacts and recover unconnected parts within the combined
saliency maps.

In visual comparison, our method produces higher quality saliency maps which stress
out the total object meanwhile suppress background clutter. Both qualitative and
quantitative experiments show our approach outperforms 8 state-of-the-art methods,
achieving the highest precision rate 96% (3% improvement from the current highest),
when evaluated via one of the most popular data sets. Excellent content-aware image
resizing also could be achieved using our saliency maps.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Human usually pay more attention to some parts of a
given image. This visual attention mechanism has been
extensively studied by researchers, due to it can allow us
to allocate our sensory and computational resources to the
All rights reserved.
most valuable information. Salient object detection is one
of the most important aspects of such attention mechan-
ism. Various applications have been explored by using
salient object detection, such as auto target location and
segmentation [1,2], object based image retrieval [3],
content-aware image resizing [4–7] and so on.

Saliency detection approaches usually can be categorized
into two groups, so-called bottom-up and top-down. Bottom-
up category [8,16–21] simulates our instinctive visual atten-
tion mechanism and lots of low-level features like color
(intensity), edge (texture) could be adopted. Hence it is
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1 Notice this character does not mean salient object should be just
right fixed in the image center, yet means it usually appears in a centered
area range, which could be represented using a probability-distribution-
like prior map (Fig. 3).
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stimulus and data driven. A salient object should be unique
or have strong contrast compared to its surroundings with
the respect of such features. Among them, color contrast is
one low-level feature which may easily draw our attention
[9,10].

The other category is called top-down [11,12,15]. Since
top-down process in visual attention mechanism is defined
as using effective memory to process presented information.
Thus it is task and knowledge driven. Via the computer
vision techniques, we can incorporate prior statistical
knowledge or the high-level/object-level features such as
faces, text, parts of human body detection or other task-
specified object detection to simulate such kind of memory.
As it has been proved that both bottom-up and top-down
process contribute to human visual attention, some pre-
vious saliency models [13,14] belong to a mixture of the
above two categories, i.e. combining both low-level and
high-level features during detection.

Due to the adaptability of bottom up category, i.e. such
kind of methods could be used to detect various target in
more universal cases, in recent years, bottom-up methods
have been widely yet deeply studied. Among lots of low-
level features, color is the most informative one and might
convey tremendous saliency information of a given image.
Unfortunately, color feature is seldom fully exploited in the
previous saliency models [16,19–21,34], in which only
color contrast [16,19–21] or color distribution [34] is
employed.

In this paper, we take the advantages of color contrast
and color distribution to carry out our saliency detection,
so our method mainly belongs to the bottom-up category,
but slightly mixed with a top-down color distribution prior,
which will be demonstrated in detail later. The previous
work which is most related to ours should be [16] and
recent [17]. The former defines pixel-wise saliency as a
pixel's contrast to all other pixels. This is then converted
into computation based on color histogram. Also, good
results are reported using HC (Histogram Contrast) and RC
(Region Contrast) methods in [16]. Unfortunately, their
methods only consider the color contrast but exclude the
color distribution, which may also be an important kind of
character for salient object. So their HC and RC methods
may not get good results on the images in which parts of
background have relatively stronger contrast than the real
salient object. Besides, the saliency maps obtained using
RC usually pop out salient objects unevenly, and there is
also lots of background clutter, as is shown in Fig. 4 (2nd
and 3rd in the first row) and Fig. 8.

Our work also differs from recent [17] which measures
the image saliency using element uniqueness and element
distribution. In contrast, we measure the saliency based on
the three disciplines for salient object in a more compre-
hensive way and we design a global saliency smoothing
procedure which solves the ambiguity caused by distribution
prior. Moreover, we refine the final saliency maps using
meanshift segmentation to maintain the edge details, which
facilitates the post-processing like object segmentationwhile
[17] treats the refinement as a pixel-wise upsampling,
aiming at improving the visual quality. As can be seen, our
method outperforms [17] on providing more uniform sal-
iency maps.
In summary, motivated by the previous work, we
propose that a salient object may obtain the following
characters on color feature at the same time, in two folds,
the color contrast and color distribution.

I. The color components belong to a salient object may
have strong contrast to their surroundings, which is
biologically inspired [8]. (contrast)

II. These color components may be located near image
center1 rather than image boundary. It is based on the fact
[13] that shows human fixation has much higher probabil-
ity to fall onto the center area of the image. (distribution)

III. These color components usually distribute com-
pactly [23]. In another word, color components which
distribute widely are less likely to belong to a salient object.
(distribution)

From the discussion, a salient object should obey the
three disciplines above simultaneously. Thus the corre-
sponding saliency could be formulated as

S¼Dprior � Scontrast � Sdistribution ð1Þ

in which S represents the final saliency of a pixel, a part or
an object, while Dprior, Scontrast and Sdistribution are respec-
tively the corresponding distribution prior (II), color con-
trast (I) and color distribution (III) saliency. Since a salient
object should obey the three disciplines above at the same
time, a small value in any component (e.g. Scontrast ¼ 0) may
pull down the final saliency (S¼0).

Our method takes the above three characters to per-
form saliency detection. The experimental results show
our algorithm can highlight a salient object more uni-
formly meanwhile keep a much cleaner background. As a
result, high quality saliency maps can be obtained. Some
examples are shown in Fig. 1. The contributions of this
paper include:
1.
 A comprehensive salient object detection system is
proposed, which combines the color contrast and color
distribution in a unified manner.
2.
 Additional processing procedure such as global saliency
smoothing and refinement using meanshift segmenta-
tion are introduced, which are proved to practically
improve the performance of the system.
3.
 Our method outperforms the state-of-the-art in both
qualitative and quantitative evaluations.
4.
 The results on other applications such as content-aware
image resizing also show the superiority of our method
against the recent approaches.
A preliminary conference version of this work appeared
in [39].
The rest of this paper is organized as follows. Related
works are described in Section 2. Our methodology is
proposed in Section 3. Experimental results are analyzed
in Section 4 while conclusion and future work are drawn
in Section 5.
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Fig. 1. Saliency maps produced using our method.
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2. Related work

As is mentioned above, the main categories of saliency
detection methods are bottom-up and top-down. Since
our method belongs to the former, here we only review
related bottom-up category. For top-down category, we
suggest readers to refer to a recent survey [35].

Among bottom-up category, as one of the earliest work,
Itti et al. [8] proposed a center-surround operation as local
feature contrast in the color, intensity, and orientation of
an image. The center-surround operation is realized using
DOG (Difference of Gaussians). Then Hou et al. [18]
propose a method based on the spectral residual in the
amplitude spectrum of Fourier transform. Zhai et al. [19]
define the saliency of each pixel as its contrast to all other
pixels. However, for efficiency, they only consider the
luminance channel. Achanta et al. [20] propose a fre-
quency tuned method which is extremely fast. They define
the saliency of a pixel as its distance to the image average.
But this algorithm is less promising for images that contain
complex background and textures. Goferman et al. [21]
combine local feature and global feature to estimate the
patch saliency in multi-scale. This leads to high computa-
tional cost. Besides, the use of local feature may cause
edges highlighted. Cheng et al. [16] propose Histogram
Contrast based and Region Contrast based methods, called
HC and RC respectively, as is mentioned in Section 1.
Saliency maps obtained using their methods may contain
background clutter and sometimes highlight parts of the
object. Although they combine GrabCut [22] and their
saliency maps to get good segmentation results, we
demonstrate that high quality saliency map is the basis
of various post processing. Thus the key point should be
focused on how to improve the quality of the obtained
saliency map. More recently, Perazzi et al. [17] combine
color contrast and color distribution to perform saliency
detection. They show that the complete contrast and
saliency estimation can be formulated in a unified way
using high dimensional Gaussian filters. Then, an upsam-
pling procedure is carried out to assign each pixel a
saliency value. Although better visual quality may be
obtained, their saliency maps sometimes highlight only
part of a salient object. Jung et al. [29] extent previous
work [18] from global spectral residual into a local one and
then combine these two into a unified spectral-domain
approach. Although the local spectral residual provide a
chance to analyze structural parts of a salient object, these
parts are still corners or edges, leading to edges high-
lighted in the final saliency maps.

Furthermore, there are some bottom-up methods which
adopt multiple features. Liu et al. [23] considers multiscale
contrast, center-surround histogram, color spatial distribution
as well as motion cue in a CRF learning manner. Gopalak-
rishnan et al. [30] models both the color and the orientation
distribution in a given image and compute the two saliency
maps separately. The final saliency map is selected as either
color saliency map or orientation saliency map by automati-
cally identifying which maps leads to correct detection
results. Alexe et al. [24] propose the objectness and use a
sliding window and compute a multiple low-level feature
based saliency score for each window. Salient object corre-
sponds to the window with the highest score. Feng et al. [25]
compute the window saliency based on superpixels. They use
all the superpixels outside the window to compose the inside
ones, thus the global image context is combined. Fang et al.
[31] present a method to perform saliency detection in
compressed domain. They extract intensity, color, and texture
features of the image from the discrete cosine transform
(DCT) coefficients in the JPEG bit-stream. Lang et al. [32]
render the saliency maps by finding the consistently sparse
elements from the joint decomposition of multiple-feature
matrices into pairs of low-rank and sparse matrices.
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Our saliency detection method differentiates from the
state-of-the-art bottom-up methods on expectation, for
our method concentrates on how to produce high quality
saliency maps which highlight the entire object uniformly
as well as suppress the background clutter enormously.
High quality saliency maps facilitate most post processing
like object segmentation and content-aware image resiz-
ing, as we will show later.

3. Methodology

Fig. 2 shows the whole procedure flow of our method,
including SLIC superpixel pre-segmentation [26], color
contrast and color distribution computation, combination
and final refinement. Because high quality saliency maps
are produced, using simple thresholding may achieve good
segmentation results, as we will show in the final quanti-
tative comparison. Note that an input image is first resized
to the size of (W, H), which subjects to max (W, H)¼400.
W and H are respectively the width and height of the
resized image. Then all the parameters of our method are
tuned on this basic resolution.

3.1. Pre-segmentation

In order to calculate color contrast of a pixel to all other
pixels, a straightforward way is pixel-wise computation, as
is mentioned in [19]. However, the computational cost of
such algorithms is O(M2), where M denotes the number of
pixels in the input image. This is terrible because an input
image usually contains hundreds of thousands pixels. An
elegant way to speed up and reduce computational cost is
histogram based computation [16,19] or segmenting images
into edge-preserving regions, like that in [16,17,25]. Pixels in
Fig. 2. The whole procedure flow of our method, including SLIC superpixel
combination, final refinement and object segmentation. (For interpretation of the
version of this paper.)
the same region usually have homogenous color compo-
nent. Computing region based contrast instead of pixel-wise
operation enormously pulls down the computational com-
plexity. Thus, we first use SLIC superpixels [26] to decom-
pose an image and generate spatial compact regions Ri,
i¼1,2,3…N with relatively consistent size, see Fig. 2 for
instance. Compact SLIC superpixels are generated iteratively
using mean-shift clustering based on the initial uniformly
distributed region seeds. We use SLIC superpixels in LAB
color space, as is suggested in [26]. For an input image, we
segment it into about N¼500 superpixels, a tradeoff
between computational cost and description ability, and
then use these superpixels as processing units. Here let ci; pi
denote the average color and position of the ith superpixel

ci ¼
∑Im∈Ri I

C
m

jRij
; pi ¼

∑Im∈Ri I
P
m

jRij
ð2Þ

where ICm and IPm are respectively 6D color vector, constituted
by LAB and RGB components (corresponds to ci

LAB
and ci

RGB
),

and position vector of pixel Im. jRij is the sum area of
superpixel region Ri. Pre-segmenting the image into super-
pixels eliminates unnecessary details and noises as well.

3.2. Color contrast

According to character (I), we define the color contrast
saliency of region Ri as

Scontrasti ¼∑
j
Dðci; cjÞ2wP

ij ð3Þ

in which Dðci; cjÞ ¼ ∥ci�cj∥2 is Euclidean distance between
ci and cj. That means we first combine both color systems
in color contrast computation. This is motivated by one
color system does not always work [27,33], since the LAB
pre-segmentation, color contrast and color distribution computation,
references to color in this figure caption, the reader is referred to the web
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color space is well known on best characterizing the
human visual perception while the RGB color system is
the most widely used on variety of devices and displaying
facilities. Different from [27] which computes saliency
maps on different color systems and then averages the
results, for convenience, we directly use the concatenated
features vectors. Note that ci and cj is normalized (sub-
tracting the mean and dividing the standard deviation)
before computation in order to zoom different color
system into the same scale. Here quadratic term of the
2-norm is used to better suppress the low contrast
component (usually background). wP

ij ¼ e�α‖pi�pj‖2 is spatial
constrain, which enhances the effect of nearer neighbors. α
controls the weight's sensitivity to spatial distance. When
α-0, wP

ij-1, (3) degrades into global contrast calculation
which is similar to that in [16]. Note the main difference
between (3) and the region contrast (RC) proposed in [16]
is that [16] uses segmented regions that are not enforced
to be of roughly consistent size, thus the color contrast
measure should involve region sum area. Since our super-
pixels are generated using SLIC which guarantees com-
pactness and size consistency, thus it guarantees more
accurate computation of color contrast and distribution.

Actually, only using color contrast may hardly filter out
the false positives which have high color contrast but
belong to the background clutter, e.g. high color contrast
clutter near the image boundary (the white road in Fig. 4,
contrast assumption fails to detect the flower but renders
the road with the highest saliency in the 4th image). So in
order to make our systemmore robust against such clutter,
we introduce a top down color distribution prior, which
meets character (II) mentioned in Section 1. An advantage
of using distribution prior is that we could rule out the
background color components which have the similar or
1000 images 1000 groun

Input im

Fig. 3. An illustration for obtaini
even higher contrast than the color components that
belong to the real salient object, since in practice, a
photographer may seldom put the target near the image
boundary while make the image center contain high
contrast background. Although such prior may fail in
abnormal or rare cases, it eliminates more false positive
in normal cases. Notice that in Fig. 4, compared with color
contrast based methods HC and RC, our approach renders
the white road in the background much lower saliency.
After combining the distribution prior, (3) should be
rewritten as

bScontrasti ¼Dprior
i ∑

j
Dðci; cjÞ2wP

ij ð4Þ

In (4), bScontrasti indicates an distribution-prior-enhanced
version differentiating from (3). Di

prior
is the distribution prior

of superpixel Ri. According to the fact that human fixation has
much higher probability to fall onto the center area of the
image, Di

prior
is larger when pi is closer to the image center.

Here a Gaussian distribution like Dprior
i ¼ e�w∥pi�c∥2 may be

used, in which c denotes image center. However, instead of
being puzzled by how to adjust parameter w, which controls
the probability distribution of salient object's occurrence, a
simple but effective statistical approach is used. We compute
the average of 1000 ground truth images provided by [20]
(Fig. 3). The ground truth images are first resized to resolution
400�400, and then are summed together and averaged. The
average image commonly shows where a salient object is
most likely to appear. Then it is normalized to have max-
imum value 1 to form the distribution prior map. In our
implementation, the distribution prior map (resolution
400�400) is resized to the input resolution when it is used,
and Di

prior
is directly obtained from the resized distribution
d truths Distribution prior map

prior
iD

age

Resized

Superpixel

ng distribution prior map.
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prior map (denoted as RDM for short) as

Dprior
i ¼ ∑Im∈Ri

RDMðIPmÞ
jRij

ð5Þ

where Im
P

is position vector of pixel Im and RDMðIPmÞ is the
value on the resized distribution prior map at position Im

P
.

Computing the average prior in a superpixel yields a more
robust prior estimation. Actually when we compute the
saliency map of an image from this dataset [20] (called
MSRA-1000), we have considered the other 999 images'
ground truth to calculate the distribution prior. This is
reasonable since we could suppose images are usually
independent from each other, hence independent from the
computed prior map. We believe this is better than naively
setting the parameterw in a Gaussian distribution to simulate
such center bias. Besides, we find that the average of 999
images is almost equal to that of 1000 images, leading to
nearly no influence on the final results. Distribution prior in
Fig. 3 reveals salient objects usually appear in a centered area
range, and we also find our prior map is compatible with the
one-third rule in professional photography. We sample the
four intersection points of one-third lines used in the profes-
sional photography and the resulting distribution prior values
are respectively 0.6270, 0.6272, 0.6275 and 0.6275 whereas
the points that are very close to the four boundaries (Fig. 3)
acquire nearly zero prior values. This indicates the four
intersection points obtain high prior values as well.

Combining color contrast and distribution prior may
result in ambiguous/distorted saliency map and could not
pop out the entire object uniformly, as is shown in Fig. 4
(the 5th image). This is caused by the fact that prior only
highlights the central parts of the image. Even a uniform
color contrast map being multiplied by the prior map
would result in such phenomenon. As a solution, we
propose to adopt a global saliency smoothing procedure
Fig. 4. From left to right, top to bottom: original image, result from HC, resul
incorporating distribution prior, contrast saliency further incorporating global
contrast clutter from the background while after the smoothing procedure, t
background is rendered the highest saliency by HC while RC highlights the flow
in color space to assign closer saliency values to regions
with similar colors as

S
contrast
i ¼∑

j
wC

ij
bScontrastj ð6Þ

where S
contrast
i represents the smoothed saliency. wC

ij ¼
ð1=NCÞe�β∥cLABi �cLABj ∥ is the weight corresponding to color
similarity, as LAB is better for smoothing in practice.

NC ¼∑je
�β∥cLABi �cLABj ∥ is its normalization term that guaran-

tees all weights summed to 1. In our experiment, we find
that exponent function works better than Gaussians on
smoothing saliency of the whole object. In contrast,
Gaussians fall down too sharply and usually highlight
parts of object. β controls the extent of smoothing. When

β-0, wC
ij-1=NC , after computing (6), all regions will

obtain the same saliency, achieving the most extreme

case. When β-1, output S
contrast
i equals to bScontrasti .

Through computing (6), the whole object's saliency
becomes more uniform (last image in Fig. 4). Note our
global saliency smoothing is also different from the con-
ventional saliency propagation mentioned in [34], since
the proposed method in [34] uses Page Rank to propagate
the saliency energy to obtain uniform saliency map. In
contrast, we show this purpose could be achieved through
a global computational smoothing fashion. By the way, an
independent but related work is proposed in [38], which
uses guided filter to smooth the region-based saliency
map. However, since they have adopted segmentation
method which is the same as that in [16], the generated
regions with irregular size may degenerate the perfor-
mance of the guided filter, which involves region location.
For comparison, aiming at more uniform saliency render-
ing, our smoothing is global and we use SLIC superpixel to
t from RC, contrast saliency without distribution prior, contrast saliency
saliency smoothing. Note the distribution prior help filter out the high
he overall object is highlighted uniformly. Notice that the road in the
er unevenly.
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pre-segment images, which guarantees compactness and
size consistency as aforementioned.

The smoothed saliency map is then normalized to [0, 1]
using linear stretch as (7) to get the ultimate color contrast
saliency map.

S
contrast
i ←

S
contrast
i �minjðS

contrast
j Þ

maxjðS
contrast
j Þ�minjðS

contrast
j Þ

ð7Þ

In addition, we examine the smoothing power of β by
choosing various β to obtain the smoothed color contrast
saliency maps. Fig. 5 shows a typical example where β
varies from 10 to 10�4. When β get smaller, the performance
becomes better. However when β is smaller enough, tuning
it smaller again results in nearly no difference. This is
because when β turns relatively smaller enough, the e�βx

can approach linear tendency for a certain interval of x, that
is e�βx-1�βx when βx-0. Thus a small number of β may
satisfy the demand of uniform rendering. From another
sight, the smoothing procedure also could be deemed as
weighted averaging which helps to suppress background
clutter. For example, suppose there are some clutter on the
green grassland in Fig. 4 (means some parts of the grass are
rendered high contrast saliency using aforementioned
operation). However, after the saliency smoothing opera-
tion, the entire saliency energy of these parts will be
assigned uniformly (i.e. is averaged) to the whole grassland.
Thus each part will obtain very low saliency. This also could
be concluded from Fig. 4 that before saliency smoothing
procedure, although the saliency energy is concentrated on
the flower, there are still some clutter from the grassland.
However, after smoothing, the grassland is rendered the
lowest saliency due to its largest area in the image. From the
discussion above, the specially designed smoothing proce-
dure may pop out the complete object meanwhile suppress
background.
3.3. Color distribution

We compute color distribution similarly to [23] to meet
character (III). However, the difference is that we model
the color distribution of each superpixel separately, which
seems more suitable in our superpixel based framework,
while [23] models the whole image color using Gaussian
Mixture Model (GMM) in a Bayesian treatment. Here,
when we consider a specific superpixel's (e.g. Ri) color
distribution variance, we first find superpixels Rj; j¼
1;2;3;…;N that are similar with Ri on color appearance.
This is measured using color similarity wij

C
between cj and

ci. The distribution variance of color component ci is then
1 0.110

Fig. 5. The smoothing power of β. When β gets smaller, the smoothing is more
However, when β is smaller enough, the performance remains the same.
defined as

Ddistribution
i ¼ ‖∑

j
wC

ijp
2
j � ∑

j
wC

ijpj

 !2

‖1 ð8Þ

Here, the square of pj ¼ ðxj; yjÞT denotes the element

square of vector pj, that is p2j ¼ ðx2j ; y2j ÞT . Actually (8)

calculates the distribution variance in x and y direction
and uses 1-norm to add them up. Note the parameter β in
wij

C
of (8) is tuned differently from that in (6), resulting in

more promising performance in practice. Eventually,
Di
distribution

is normalized to [0, 1]

Ddistribution
i ←

Ddistribution
i �minjðDdistribution

j Þ
maxjðDdistribution

j Þ�minjðDdistribution
j Þ

ð9Þ

As demonstrated above, high distribution variance
indicates that the corresponding color components are
widely distributed in the whole image and are less likely to
belong to a salient object, while low variance indicates a
spatially compact distribution. Thus regions with high
distribution variances should obtain low saliency, so we
define the color distribution based saliency as

Sdistributioni ¼ 1�Ddistribution
i ð10Þ

3.4. Combination and refinement

As we illustrated in (1), it is reasonable to non-linearly
integrate the color distribution saliency and the color
contrast saliency, as is presented in (11). Such non-linear
combination can better pop out salient objects meanwhile
suppress background than linear combination, just see
Fig. 6 for examples.

Si ¼ S
contrast
i � Sdistributioni ð11Þ

After combination, there may still be noises and arti-
facts due to quantization errors of superpixel segmenta-
tion (see Figs. 6 and 7). In order to get high quality saliency
maps, we again segment the images into spatially non-
compact regions R′

k; k¼ 1;2;3…N′ using mean-shift seg-
mentation [28]. We set conservative parameters sigmaS¼
7; sigmaR¼ 6:5;minRegion¼ 240 for all images to avoid
under-segmentation. Then the image saliency is refined
based on these regions as

S′k ¼
∑Im∈R′

k
ISm

jR′
kj

s:t: ISm ¼ SijIm∈Ri
ð12Þ

where Im
S
is pixel saliency computed by (11) (means if pixel

Im belongs to Ri, then its saliency Im
S

is equal to the
0.01 0.001 0.0001

powerful and the saliency of the whole object becomes more uniform.



Fig. 6. Examples of combination. From left to right: original images, color contrast saliency maps, color distribution saliency maps, combined saliency maps
via non-linear integration. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

artifacts

unconnect

Original Combination Refinement

Fig. 7. Thanks to the refinement operation, artifacts are eliminated while unconnected parts generated by segmentation errors become connected.
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superpixel's saliency Si). jR′
kj is the sum area of region R′

k.
Compared to aforementioned pre-segmentation, mean-
shift segmentation [28] may segment some homogenous
object surfaces or background into large regions, hence
further eliminating saliency inconsistency. In addition,
since mean-shift segmentation is not enforced to produce
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consistent size region, it adheres image boundary better,
especially for thin elongated part of the object (petiole of
the leaf in Fig. 7). Thanks to this refinement operation,
artifacts are eliminated while unconnected parts gener-
ated by pre-segmentation become connected (Fig. 7).
Finally, S′k; k¼ 1;2;3…N′ is normalized to [0, 1] to render
our final saliency map.

4. Experiment and comparison

4.1. Parameter setup

Here, we summarize and review the crucial parameters
of our system. Note all parameters below are tuned on the
basic resolution which satisfies max (W, H)¼400 and
these parameters are kept consistent during the whole
experiment. First the spatial constrain α in (4) should not
be too large, because large value only takes nearby super-
pixels into consideration and merely highlights edge
superpixels of large-scale object. Thus we conservatively
set this parameter to a small value, e.g. 10�5. We find the
performance of our method does not change too much
when using various such small values. The β in (6) is set to
a relative small number (e.g. 10�3). Tuning it smaller again
has little impact on the detection results, as we show in
Fig. 5. A relatively complicate parameter is the β in (8),
which should not be too large or too small. Actually we
tune this parameter (set to 10�1) on a very small set (about
tens of images) and find it generalize well for other
images. In summary, our system only has three crucial
parameters that need to be determined manually and the
above values are also deemed as default in our system.

4.2. Evaluation on MSRA-1000 dataset

We test our method on the public dataset provided by
[20]. This dataset is derived from the original MSRA
dataset (5000 images) [23] and contains 1000 images with
usually one unambiguous salient object in each image. The
difference is that the dataset from [20] contains object-
contour based ground truth while MSRA dataset [23] only
provide bounding boxes as ground truth. Since object-
contour based ground truth help conduct more accurate
evaluations, to our best, this dataset is the most widely
used for comparison between different saliency detection
methods. We select the current popular 8 state-of-the-art
saliency detection methods including IT [8], SR [18], CA
[21], FT [20], LC [19], HC [16], RC [16] and SF [17] for
comparison. The saliency maps of previous works exclud-
ing SF are provided by [16].2 The SF [17] saliency maps are
obtained from the author's webpage.3 Fig. 8 shows several
comparison results. Visually, it can be seen that our
method obtains relatively higher quality saliency maps
compared with the rest 8 methods, which sometimes
highlight parts (RC and SF), corners (IT) or edges (SR and
CA) with relatively more background clutter (HC, RC, LC
and FT). In contrast, our method performs better on
2 http://cg.cs.tsinghua.edu.cn/people/�cmm/Saliency/Index.htm.
3 http://graphics.ethz.ch/�perazzif/saliency_filters/.
stressing out the complete prominent object while sup-
pressing background.

Besides visual comparison, we also implement quanti-
tative comparison. We evaluate the performance of our
method by comparing its precision–recall rate. For a given
threshold T, the precision and recall rate of a certain
saliency detection method are defined as

Precision Tð Þ ¼ 1
1000

∑
1000

i ¼ 1

jMiðTÞ∩Gij
jMiðTÞj

ð13Þ

Recall Tð Þ ¼ 1
1000

∑
1000

i ¼ 1

jMiðTÞ∩Gij
jGij

ð14Þ

where Mi(T) is the binary mask obtained by directly
thresholding the saliency map using threshold T on the
ith image. Gi is the ground truth. j � j denotes mask's sum
area. As we use data set provided by [20], (13) and (14) are
the averages of 1000 terms. In order to draw the precision
and recall curves under different T, we use every possible
threshold T from 0 to 255. This is similar to the fixed
threshold experiment in [16,17,20].

The left sub-figure in Fig. 9 show the precision and
recall curves. As can be seen, our method presents the best
precision and recall curve. Our maximum precision rate is
96%, with 3% improvement from the second best 93% (SF).
Another interesting phenomenon is that our method
maintains high precision rate under various recall rate,
i.e. our model is the best for recall smaller than 0.93 and is
slightly worse than SF for recall between 0.93 and 1. This is
actually consistent with our visual evaluation, which
shows our approach provides high quality saliency maps
that highlight the whole objects uniformly while suppress
background.

As in many applications, high precision and high recall
are both desired. Thus in addition to precision–recall
curves, we also evaluate the F-measure, which is an
integrated evaluation criterion that combines precision
and recall as

Fβ Tð Þ ¼ ð1þ β2ÞPrecisionðTÞ � RecallðTÞ
β2 � PrecisionðTÞ þ RecallðTÞ ð15Þ

where β2 is set to 0.3, as is suggested in [16,17,20]. The
right sub-figure in Fig. 9 show F-measure curves varying
with threshold T. Compare with other methods, our
method achieves high F-measure scores in a wide range,
indicating less sensitivity to the threshold value. Notice
that under this F-measure criterion, RC sometimes per-
forms less better than HC. This may be attributed to that
RC achieves higher precision, but lower recall at the same
time, which pulls down the F-measure score to some
extent. The same thing also happens on SF. As high quality
saliency maps can be obtained using our method, using
simple fixed threshold can achieve good segmentation
results.

Besides, an adaptive threshold experiment, similar to
that in [17,20], is carried out. The adaptive threshold Ta is
defined as two times the mean saliency of an obtained
saliency map, as is shown in (16).

Ta ¼min 2�∑M
i SðIiÞ
M

; Tmax

� �
ð16Þ

http://cg.cs.tsinghua.edu.cn/people/~cmm/Saliency/Index.htm
http://cg.cs.tsinghua.edu.cn/people/~cmm/Saliency/Index.htm
http://graphics.ethz.ch/~perazzif/saliency&underscore;filters/
http://graphics.ethz.ch/~perazzif/saliency&underscore;filters/
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Fig. 8. Visual comparison results between our method and other 8 popular state-of-the-art methods.
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Fig. 9. Precision–recall, F-measure curves of 8 state-of-the art methods including CA, IT, SR, FT, LC, HC, RC, SF as well as our method on MSRA-1000 dataset.
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whereM denotes the number of pixels in the saliency map
and i is pixel index. Tmax is the upper bound for Ta and is
set to 255 by us. Fig. 10 shows the precision, recall and
F-measure in adaptive threshold experiment. It can be
seen that in this experiment, RC still achieves high preci-
sion but low recall, because RC usually highlights only part
of the real salient object. The precision rate of SF is very
close to our method, but our method shows the highest
recall rate and F-measure score, respectively 81% (9%
improvement) and 0.86 (0.03 improvement).

4.3. Evaluation on complex SOD dataset

To evaluate the effectiveness of our method, we have
done comparisons on SOD dataset [37] which contains 300
images with more complex background and also provides
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Fig. 10. Evaluation for adaptive threshold experiment.
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foreground mask as groundtruth. Note here the prior map
used is still the mask average map from MSRA-1000
dataset as shown in Fig. 3, since we just need a center
bias hypothesis and there is no need to compute it
specially for each testing dataset. We could also use this
prior map for any other images from any other datasets.
Fig. 11 shows the quantitative evaluations.4 The accuracy of
all methods are much lower, indicating that this database
is much more difficult. Some simple contrast-based meth-
ods like LC, HC, FT could not handle such complex scenes
and achieve relatively poor performance. The IT model
which mainly uses Difference of Gaussians (DOG) and
tends to highlight edges performs better than before since
some objects from SOD contains complex texture and
could be detected by DOG. The advantage of our method
is that it could uniformly pop out the salient object
meanwhile suppress background clutter, which could be
observed from the visual comparison in Fig. 12. This may
be benefited from taking the three characteristics of salient
object into consideration at the same time and further
combining saliency smoothing guarantees uniform sal-
iency map. Thus our method achieves both higher preci-
sion and F-measure.
4.4. Evaluation for each individual step

Fig. 13 presents the evaluation for individual phase of
our algorithm on MSRA-1000 dataset, respectively includ-
ing only using color contrast saliency maps, only using
distribution saliency maps, saliency maps without distri-
bution prior, saliency maps without saliency smoothing
and saliency maps without refinement. It shows the
benefit of combining all steps while adding distribution
prior and saliency smoothing really works for enhancing
the performance on obtaining higher precision and wider
range of high F-measure. Fig. 14 shows some intermediate
results visually. It could be concluded form the 2th, 3th
and 7th column that color contrast and color distribution
generate complementary performance and the combina-
tion of both would achieve better results. 4th and 7th
column show that employing the prior usually does not
change the saliency detection results of some salient
objects that are placed off the image center, yet it has a
chance to correct the false positive near the image bound-
ary (see 1st, 6th and 8th row). Again observing the 5th and
4 Because SF [17] only provides detection results on MSRA-1000
dataset, we could not compare with it on SOD dataset.
7th column, we could see that without the saliency smooth-
ing procedure, the salient objects could not be popped out
uniformly. 6th and 7th column conclude that refinement
could offer fine boundary details while maintain saliency
consistency.

4.5. Boosting for the state-of-the-art and comparisons

Additionally we have explored the effectiveness of the
distribution prior and refinement procedure exploited in
this paper. We have conducted a boosting experiment
similar to [36], in which we multiply the saliency maps
of the above 8 methods with the distribution prior map in
Fig. 3. Then the mean-shift refinement mentioned in (12)
with the same parameters is used to further enhance the
results. The evaluations on MSRA-1000 dataset are shown
in Fig. 15 and some interesting conclusions could be
drawn. First all 8 methods have a boost on performance
compared to that in Fig. 9, which shows the effectiveness
of the prior and refinement. Some methods like FT and HC
even have more dramatic improvement than RC. The weak
boosting of RC is caused by the most enormous clutter in
its saliency maps, which could be inferred from Figs. 8 and
12. Such clutter brings two drawbacks into boosting. The
one is the clutter in the image center gains unwanted
enhancement by the prior. The other is the clutter of other
uninteresting parts could not be suppressed efficiently by
the prior (somewhat shown in Fig. 16). Although our
distribution prior provides good accuracy, leading to
remarkable improvement on some methods, these two
drawbacks make RC have relatively lower precision under
higher recall. This fact also reveals naively adding the
center boosting cannot always boost the performance in a
large gap. For comparison, our method still stands on the
top and achieves high F-measure under wide range of T.
Please note one thing that although after boosting using
prior and refinement, the quantitative evaluation could
obtain high scores, the visual performance may be degen-
erated, since such naive combination fail to highlight the
object which is placed off the image center uniformly.
Some visual results for this boosting experiment are
shown in Fig. 16.

4.6. Content-aware image resizing

In content-aware image resizing [4–7], saliency maps
are usually used to specify relative importance across
image parts. These important content should be preserved
to the original while the other unimportant pixels have to
take more sacrifice. Here we use the framework proposed
in [4] to validate the performance of the saliency maps
produced by our method on smart image resizing task. For
an image with resolution [X, Y], we only consider the
scaling along x-axis while other cases are straightforward.
The resized resolution is denoted as [X′, Y ′], where Y ¼ Y′
and X′oX. λ¼ X′=X is called scaling factor. The λ in Fig. 17
is set to 0.5. Since our method generates uniform saliency
maps compared to RC and SF, when used in content-aware
resizing, our saliency maps better preserve the whole
objects during scaling.
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Fig. 12. Visual comparisons on SOD dataset.
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Fig. 13. Individual phase of our algorithm, respectively including only contrast, only distribution, without distribution prior, without saliency smoothing
and without refinement.
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Fig. 14. Visualization of intermediate results. From left to right are respectively: original images, only color contrast, only color distribution, without prior,
without smoothing, without refinement, full version of our method and ground truth. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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Fig. 16. Visual results for boosting experiment.
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Fig. 17. Using saliency maps of RC, SF and ours on content-aware image resizing.
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4.7. Computation cost

It takes about 2.7 s for our method to process a typical
400�300 color images. The most time consuming step is
the pre-segmentation (SLIC) and refinement (mean-shift
segmentation), which respective take about 1 s (37%) and
1.6 s (59.2%). The superpixel-based computation such as
(4), (6) and (8) only takes 0.1 s (3.8%) in total. This is
because (4), (6) and (8) all require the color distance
between arbitrary superpixels. Actually the color distance
between two superpixels only needs to be computed once
when we first calculate (4) and then it could be reused for
(6) and (8). The computation time reported above is
acquired on our Dual Core 2.6 GHz laptop with 3 GB
RAM using unoptimized Matlab code. Note we use Matlab
wrapper of mex-file for SLIC and mean-shift segmentation.

4.8. Failure cases

As we use color information, we find our method fails
in cases where object's colors and background colors are
similar, as is shown in the first row of Fig. 18. Moreover,
sometimes such low level feature may not really charac-
terize the object that attracts human attention. In the
second row of Fig. 18, the bag carried by the seated old
man is rendered highest saliency. However, the real salient
object should be the whole human body, not only the bag.
This indicates that high-level features (top-down knowl-
edge) are needed for a complete saliency detection system.

5. Conclusion

Our method effectively combines color contrast and
distribution into a computational superpixel-based frame-
work to meet the three disciplines for salient objects and
renders high quality saliency maps. The exploited distri-
bution prior and saliency smoothing procedure are both
proved to contribute to the final results and achieve
improvement in a large margin. Visual comparisons on
the most popular dataset have shown the advantage of our
method against other state-of-the-art approaches on pop-
ping out salient objects while suppressing the background.
Evaluations under Precision–Recall and F-measure as well as
application on content-aware image resizing have provided
further support to the effectiveness of the proposed system.
Since in this paper, only the color issues are considered, we
may extent our future work towards multiple features and
conduct more tests on other datasets.
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