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Abstract—Salient object detection is aimed at detecting and4
segmenting objects that human eyes are most focused on when5
viewing a scene. Recently, conditional random field (CRF) is6
drawn renewed interest, and is exploited in this field. However,7
when utilizing a CRF with unary and pairwise potentials having8
essential parameters, most existing methods only employ manually9
designed parameters, or learn parameters partly for the unary10
potentials. Observing that the saliency estimation is a continuous11
labeling issue, this paper proposes a novel data-driven scheme12
based on a special CRF framework, the so-called continuous CRF13
(C-CRF), where parameters for both unary and pairwise potentials14
are jointly learned. The proposed C-CRF learning provides an15
optimal way to integrate various unary saliency features with16
pairwise cues to discover salient objects. To the best of our17
knowledge, the proposed scheme is the first to completely learn18
a C-CRF for saliency detection. In addition, we propose a novel19
formulation of pairwise potentials that enables learning weights20
for different spatial ranges on a superpixel graph. The proposed21
C-CRF learning-based saliency model is tested on 6 benchmark22
datasets and compared with 11 existing methods. Our results23
and comparisons have provided further support to the proposed24
method in terms of precision-recall and F-measure. Furthermore,25
incorporating existing saliency models with pairwise cues through26
the C-CRF are shown to provide marked boosting performance27
over individual models.28

Index Terms—Continuous conditional random field (C-CRF),29
feature integration, learning, saliency map, salient object detection,30
spatial ranges.31

I. INTRODUCTION32

SALIENCY detection is aimed at detecting conspicuous im-33

age parts that attract human attention. It simulates and mod-34

els the selective mechanism of human eyes [1], [2]. There are35

generally two subcategories of saliency detection: eye-fixation36
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prediction [3]–[6] and salient object/region detection [7]–[10]. 37

The former task aims to detect sparse eye-fixation points where 38

human attend in a scene, whereas the latter task is to detect 39

and emphasize entire salient objects from an image, yielding a 40

saliency map as output where the pixel-wise intensities indicate 41

the probability of being a salient object. The recent advance 42

in salient object detection is driven by emerging multimedia 43

applications such as automatic object detection and segmenta- 44

tion [11]–[13], content-based image editing [14]–[18], image 45

retrieval [19]–[21] and compression, image sequence and video 46

analysis [22], [23]. In this paper, we mainly address salient 47

object detection. 48

To emphasize salient objects uniformly, the conditional ran- 49

dom field (CRF) that can provide label consistency becomes 50

popular in this field. By utilizing CRF, high quality saliency 51

maps that maintain well-defined object boundaries and uni- 52

formly emphasized object interior are achieved. In existing 53

studies [24]–[27], CRFs are employed in explicit or implicit 54

ways. However, when utilizing a CRF whose energy function 55

consists of parameterized unary and pairwise energy potentials, 56

most previous methods use manually designed parameters [25] 57

or learn the parameters only for unary potentials [24], [27]. 58

Hence for saliency detection, the full power of CRF on feature 59

integration is hardly exploited. 60

Motivated by the above issues, this paper proposes to fully 61

learn a CRF, namely to learn both unary and pairwise parame- 62

ters in order to exploit the power of CRF for feature integration 63

in saliency detection [1], [3]. More specifically, we investigate a 64

special CRF framework—continuous CRF (C-CRF) [28]–[30]. 65

This is motivated by the idea that saliency detection is con- 66

ventionally treated as a continuous labeling problem. In this 67

paper a novel data-driven saliency detection scheme based on 68

C-CRF [28] is proposed, which differs from [24], [27] since 69

ours enables learning to integrate various pairwise features. This 70

allows the C-CRF model to capture more sophisticated inter- 71

actions between image parts, leading to enhanced delineation 72

between objects and background in the resulting saliency maps. 73

It is worth noting that the work of Mai et al. [26] is closely 74

related to ours. In [26], the unary and pairwise potentials of 75

CRF all include parameters. However, the main difference in 76

between is that [26] employs discrete CRF (as will be men- 77

tioned later), whereas we propose to use C-CRF which benefits 78

from different designs of energy function, hence very different 79

techniques for learning and inference. In addition, as shown in 80

Section V-C the proposed method improves the performance 81

significantly from [26]. A straightforward comparison of the 82
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TABLE I
COMPARISON OF REPRESENTATIVE CRF-BASED METHODS IN

THE SALIENT OBJECT/REGION DETECTION COMMUNITY

Related work CRF type Learning unary terms Learning pairwise terms

Liu et al. [24] Discrete (D-CRF) Yes No
Mai et al. [26] Discrete (D-CRF) Yes Yes
Yang et al. [25] Continuous (C-CRF) No No
Lu et al. [27] Continuous (C-CRF) Yes No
Ours Continuous (C-CRF) Yes Yes

The abbreviation C-CRF and D-CRF stand for continuous CRF and discrete CRF,
respectively.

proposed method to state-of-the-art CRF related works are given83

in Table I. To the best of our knowledge, the complete C-CRF84

learning and inference theories have not yet been applied to85

saliency estimation.86

C-CRF was firstly proposed for ranking documents [28],87

and later applied to recognition [29] and depth estimation88

[30]. It is worth noting that CRF has already been applied to89

figure-ground segmentation [31], semantic segmentation [31]–90

[33], and also saliency detection [24], [26], [27] (Table I).91

However, most of them are conventional CRFs with dis-92

crete labels. We will later call this type of CRFs as D-CRF93

(discrete CRF). In the context of saliency detection, C-CRF94

may suit this problem better since saliency maps are known95

to be continuous and real-valued [3], [8], [34], revealing96

saliency detection can be regarded as a continuous labeling97

problem.98

The main contributions of this paper are four-fold:99

1) This study is the first to apply the complete C-CRF learn-100

ing and inferring theories to saliency detection, leading to101

a data-driven way for saliency feature integration.102

2) As shown in Table I, our work differs from existing103

saliency models that have explicit/implict relation to CRF,104

evolving from partially learning unary terms [24], [27] to105

jointly learning both unary plus pairwise terms, and from106

discrete field [26] to continuous field.107

3) We propose a novel formulation of pairwise potentials for108

C-CRF defined on a superpixel graph. Such a formula-109

tion is conducted by graph topology decomposition and110

enables learning pairwise parameters for different spatial111

ranges of graph connections. This avoids the manual effort112

of tuning spatial connections of a graph.113

4) We show from tests and comparisons that integrat-114

ing widely employed unary saliency features with pair-115

wise cues in a C-CRF manner outperforms a range of116

state-of-the-art methods. Furthermore, integrating sev-117

eral best-performing state-of-the-art methods through118

a C-CRF further pushes the performance to a new119

high level.120

The reminder of this paper is organized as follows. Section II121

briefly reviews the fundamental theories of CRF and C-CRF.122

Section III describes the related work. Section IV describes the123

proposed method. Experimental results, performance evaluation124

and comparisons are included in Section V. Finally, conclusion125

is drawn in Section VI.126

Fig. 1. General graphic model of CRF for image labeling task. A white vertex
(vi ) represents a label (yi ) and the gray vertex (x) represents the entire image.
The gray arrows indicate the unary dependencies (conditions) while the black
lines indicate the pairwise relations associating with a graph.

II. CONDITIONAL RANDOM FIELD (CRF) AND CONTINUOUS 127

CONDITIONAL RANDOM FIELD (C-CRF): A BRIEF REVIEW 128

A. Probabilistic Formulation 129

Conditional random field (CRF) is originally proposed by 130

Lafferty et al. [35] for labeling sequence data. For the image 131

labeling task, given an image x, the conditional probability 132

distribution of a label configuration y (in vector form) on the 133

CRF can be defined as 134

p(y|x) =
1

Z(x)
exp{−E(y,x)} (1)

where E(y,x) is the energy function and Z(x) is the partition 135

function.1 The energy function can be expressed as unary terms 136

plus pairwise terms as 137

E(y,x) =
∑

i

Uα(yi,x)︸ ︷︷ ︸
Unary term

+
∑

i,j,i∼j

Pϕ(yi, yj ,x)
︸ ︷︷ ︸

Pairwise term

(2)

where yi is the ith element of the label vector y, Uα and Pϕ 138

denote the unary and pairwise terms parameterized by vector 139

α and ϕ (vector α contains the parameters for unary poten- 140

tials, and vector ϕ contains the parameters for pairwise po- 141

tentials). A CRF is often coupled with the definition of an 142

undirected graph G(V,E) [35], where V is the set of graph 143

nodes and E is the set of graph edges. The label assigned to 144

each graph node vi ∈ V is denoted as yi . In (2), the notation 145

“i ∼ j” means that vi and vj are graph neighbors. Theoreti- 146

cally, the unary term Uα represents the dependency between a 147

label and the image x at a specific node, whereas the pairwise 148

term Pϕ encourages neighboring graph nodes to take similar 149

labels (i.e., enforces labeling consistency). A general graphic 150

model of CRF for image labeling task is given in Fig. 1, where a 151

white vertex represents a label and the gray vertex represents the 152

entire image. 153

1The partition functions for D-CRF and C-CRF are defined as Z(x) =∑
y exp{−E(y, x)} and Z(x) =

∫
y

exp{−E(y, x)}dy, respectively.
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B. D-CRF and C-CRF154

In the conventional CRF, i.e., the D-CRF [31]–[33], [35], all155

components of y range over a finite label alphabet (e.g., subject156

to y ∈ {0, 1}n for a binary labeling problem, where n is the157

dimension of y), whereas in the continuous CRF (C-CRF) [28],158

y is relaxed to be continuous values (y ∈ Rn ). Due to such re-159

laxing, the designs of energy functions for D-CRF and C-CRF160

differ. For example, D-CRF usually employs Potts model [32],161

[33] with indicator function for the pairwise terms, whereas in162

C-CRF, quadratic cost function can be used to measure the label163

compatibility. Besides, the techniques for learning and inference164

of C-CRF [28] differ significantly from D-CRF. The exact learn-165

ing/inference of D-CRF is usually intractable due to its discrete166

property, which requires approximation techniques [36] such167

as belief propagation, mean field, Monte Carlo approaches, to168

name a few. In contrast, C-CRF offers direct learning together169

with closed-form inference, which will be shown later in this170

paper.171

Assuming that the parameters of a CRF are given or esti-172

mated by learning, theoretically the optimal labeling vector y173

can be inferred by maximizing (1), or equivalently minimizing174

the negative logarithm of (1) as175

− log p(y|x) = E(y,x) + log Z(x). (3)

Since log Z(x) is a constant with respect to y, one can directly176

minimize the energy function E(y,x). From this viewpoint, ex-177

isting methods on saliency detection such as manifold ranking178

[25], graph regularization [37], quadratic model [27] that min-179

imize an energy function in the form of (2) can be viewed as180

special cases of inferring C-CRFs.181

III. RELATED WORK182

A large number of literatures on salient object detection ex-183

ist, see the comprehensive survey [38] and benchmarking [10].184

Here we review some previous works that are highly relevant to185

data-driven approaches or CRF-based approaches.186

Data driven approaches: The concept of learning to detect in187

saliency detection originates from [24], [39]. The idea behind is188

to automatically discover feature integration rules from training189

data instead of using manually designed rules. Judd et al. [39]190

propose to learn a saliency model from eye-tracking data, where191

low-, middle- and high-level image features are integrated by192

a linear SVM. Their work is, however, focused on eye-fixation193

prediction. Alex et al. [40] learn to score windows sampled from194

a given image, where the Bayesian theory is adopted for cue in-195

tegration. The posterior constitutes the final objectness score of196

a window. Khuwuthyakorn et al. [41] learn to integrate pixel-197

wise saliency features via a mixture of linear SVMs. Mehrani198

et al. [42] use confidence scores from a boosting classifier to199

formulate a saliency map. After that, the saliency map is fed to a200

graph cut program for figure-ground segmentation. Jiang et al.201

[43] propose to extract abundant discriminative features from202

image regions. A random forest regressor is trained to map re-203

gional features to final saliency scores. Online saliency learning204

is proposed in [44], [45], where multiple kernel boosting is em-205

ployed to identify salient parts against non-salient parts. Some206

recent data-driven methods [46], [47] consider deep learning for 207

saliency detection. Due to the deep architecture of convolutional 208

neural networks (CNNs), impressive performance is obtained. 209

However, in CNNs there often lacks explicit modeling of neigh- 210

borhood relations. Therefore, post-processing like C-CRF may 211

be required. 212

CRF inference-based approaches: Several methods [25], [37] 213

are based on inferring C-CRF without learning, where fea- 214

tures and integration rules are manually specified. In [25], [37], 215

though the word “CRF” or “continuous CRF” is not explicitly 216

mentioned, there is a potential connection between these meth- 217

ods and C-CRF. To be more specific, the employed manifold 218

ranking [25] and graph regularization [37] are special cases of 219

inferring C-CRFs, as aforementioned in Section II-B. 220

CRF learning-based approaches: Some methods on saliency 221

detection are based on both learning and inferring D-CRFs 222

or C-CRFs. Learning is first conducted to obtain optimal pa- 223

rameters and inference is then applied on user-input images to 224

achieve final saliency maps. Representative works include: Liu 225

et al. [24] detect and segment salient objects by aggregating 226

pixel saliency cues in a D-CRF. Linear weights for those cues 227

are learned under the maximized likelihood (ML) criteria by 228

tree-reweighted belief propagation. Mai et al. [26] propose a 229

saliency aggregation approach, which aggregates saliency maps 230

output by existing saliency models using a D-CRF. Weights 231

for aggregation are learned from images retrieved from a pre- 232

defined dataset. Lu et al. [27] learn optimal combination of 233

seeds for graph-based diffusion by maximizing figure-ground 234

segregation, where the employed graph diffusion is tightly re- 235

lated to C-CRF. The method boils down to learning the linear 236

parameters of unary terms of the C-CRF. In summary, [24], [26] 237

concern D-CRFs for saliency detection, where only unary pa- 238

rameters are learned. [27] implicitly considers a C-CRF, where 239

again only the unary terms are learned. In contrast, our data- 240

driven scheme differs from all the above methods on learning a 241

complete C-CRF. 242

IV. THE PROPOSED METHOD 243

This section describes the proposed method for saliency de- 244

tection that is based on fully learning and inferring a continuous 245

CRF (C-CRF). The block diagram of the proposed method is 246

given in Fig. 2. An input image is first over-segmented into su- 247

perpixels and a superpixel graph is established to capture intrin- 248

sic image context. A C-CRF will later be defined in conjunction 249

with this graph. Next, we extract various unary saliency features 250

and pairwise cues, which will be used to compose the unary and 251

pairwise terms in the C-CRF energy function. By utilizing the 252

off-line learned C-CRF parameters for both unary and pairwise 253

potentials, the inference of the C-CRF corresponds to a final 254

saliency map that is continuously valued. Details of each part of 255

the method are further given in the following subsections. 256

A. Graph Construction From an Image 257

We first describe the graph construction, where the C-CRF is 258

defined upon. Rather than constructing CRF on the pixel level 259

[24], the proposed C-CRF is constructed on superpixels, where 260
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Fig. 2. Block diagram of the proposed salient object detection method.

only a small number of graph nodes are needed. An input image261

x is first over-segmented into n superpixels by using the SLIC262

algorithm [48], which is very widely employed by previous263

work [25], [27], [37], [49]–[51] as a pre-processing step. Then264

superpixels are used as processing units. A graph G = (V,E)265

is then constructed, where the node set V consists of superpix-266

els. In this paper, the terms of “superpixels” and “graph nodes”267

are interchangeable, and vi, i ∈ {1 : n} indicates the ith super-268

pixel/node. To build the connections of graph edges, we first269

construct an initial adjacency graph G0 = (V,E0), where ver-270

tices V correspond to superpixels. E0 is the edge set (weighed271

by value 1.0) formed between pairs of spatially adjacent su-272

perpixels. Let D0(vi, vj ) be the length of the shortest path on273

G0 between nodes vi and vj . Then, the edge set E is formed274

between pairs of superpixels that are less than T nodes away on275

G0 , namely276

eij ∈ E, if D0(vi, vj ) ≤ T (4)

where T (T ≥ 1) is a predefined integer that specifies the max-277

imum spatial range. Further, as observed in many images that278

boundary superpixels are likely the same semantic background279

and also inspired by previous work [25], [50]–[52], we establish280

connection between arbitrary boundary superpixels as below281

eij ∈ E, if vi, vj ∈ B (5)

where B is a set containing all boundary superpixels. Fig. 3282

shows an example of the graph connections for the case of283

T = 3. By this mean, boundary superpixels are able to serve as284

“bridges” for labeling consistency in image background.285

B. C-CRF Composition286

The definitions of unary term Uα and pairwise term Pϕ in our287

method are motivated by the work of Qin et al. [28]. The basic288

idea is that although a unary term calculates the dependency289

between a node label yi and the entire image x (Fig. 1), the case290

can be simplified by considering the dependency between yi291

and a corresponding feature vector fi that derives from x. In our292

Fig. 3. Superpixels and graph construction. (a) An input image with superpixel
boundaries overlapped in blue. About 50 superpixels are generated just for better
illustration. (b) Superpixel boundaries in black are shown, where a superpixel
is specified. (c) C-CRF graph connections, where the connections (red lines)
from the specific node are shown. The maximum spatial range T = 3 is set
as example. Superpixels filled in red/green/blue mean that they are 1/2/3 nodes
away from the specific superpixel, respectively. Besides, blue lines around image
boundary means that two arbitrary boundary nodes are connected, as expressed
in (5).

case, fi is a feature vector that captures the saliency information 293

in x (see Section IV-C). 294

The unary term: Assuming a d-dimensional unary saliency 295

feature vector fi for node vi , the unary term is defined as a 296

weighted sum of quadratic cost 297

Uα(yi,x) =
d∑

k=1

αk (yi − fi,k )2 (6)

where αk , fi,k are the kth components of α and fi respectively, 298

and αk indicates the weight of the kth component in the feature 299

vector. The overall cost becomes larger if the label yi deviates 300

from the correspondent feature components with high weights. 301

Further, in (6), x is omitted for simplicity, though the unary 302

feature vector fi is dependent on x. 303

The pairwise term: Likewise, the pairwise term is a weighted 304

sum of quadratic cost defined as 305

Pϕ(yi, yj ,x) =
1
2

h∑

k=1

ϕkSk
ij (yi − yj )2 (7)

where Sk
ij is the kth pairwise feature defined between nodes 306

vi and vj , ϕk is the kth component of ϕ, and h is the number 307

of pairwise features. In the proposed method, Sk
ij is a positive 308
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affinity (similarity) function between vi and vj , and it is large if309

vi and vj are similar, so that they can be assigned with similar310

labels by C-CRF. Similar to (6), we have omitted x for simplicity311

in (7), although Sk
ij depends on x as well.312

The energy function: According to (2), the energy function313

E(y,x) has the following form:314

E(y,x)=
n∑

i=1

d∑

k=1

αk (yi−fi,k )2 +
∑

i,j,i∼j

1
2

h∑

k=1

ϕkSk
ij (yi − yj )2

(8)
where αk > 0 and ϕk ≥ 0 are needed to ensure the partition315

function Z(x) analytically computable (will be clear later).316

Let F denote the stacked feature matrix whose row is fT
i , and317

let Sk denote the matrix whose entry is Sk
ij . With some math-318

ematic derivation, the matrix form of (8) can be equivalently319

expressed as320

E(y,x) = eTαyTIy − 2yTFα + Tr{Fdiag(α)FT}

+
h∑

k=1

ϕkyTLky (9)

where e is an all-one vector, I is an identity matrix, Tr{·} is the321

trace, diag(α) is the diagonal matrix with α in the diagonal, and322

Lk is the Laplacian matrix of Sk . The definition of Laplacian323

matrix is Lk := Dk − Sk , where Dk is the degree matrix whose324

ith diagonal entry is Dk
ii =

∑
j Sk

ij .325

The partition function: The partition function Z(x) in the326

proposed scheme is integrable due to the continuous property327

of C-CRF. Firstly we introduce the below notation A,b, c:328

A = eTαI +
h∑

k=1

ϕkLk , b = Fα, c = Tr{Fdiag(α)FT}.
(10)

Then according to the Gaussian integration [53], we have329

Z(x) =
∫

exp(−E(y,x))dy

= exp(−c)
∫

exp(−yTAy + 2yTb)dy

= exp(−c)
∫

exp(−1
2
yT(2A)y + (2b)Ty)dy

=
π

n
2

|A| 1
2

exp(bTA−1b − c) (11)

where n equals to the dimension of A, and |A| is the determi-330

nant. The invertibility of A is guaranteed, as αk > 0, ϕk ≥ 0,331

and Lk is positive semi-definite.332

The negative log-likelihood: Substitute (11) and (9) into (3)333

meanwhile notice the notations in (10), the negative log likeli-334

hood in (3) can be re-written as335

− log p(y|x)

=yTAy − 2yTb+bTA−1b +
n

2
log π − 1

2
log |A|. (12)

TABLE II
COLUMNS OF THE UNARY SALIENCY FEATURE MATRIX F

Column Categorization Description

F : , 1∼4 Connectivity-based Geodesic distance to each side of
image borders

F : , 5 Connectivity-based Minimum geodesic distance to four
image borders

F : , 6 Connectivity-based Normalized soft region area
subtracted by 1

F : , 7 Contrast-based Spatially weighted color contrast to
other superpixels

F : , 8 Contrast-based Color contrast to all boundary
superpixels (backgroundness)

F : , 9 Distribution heuristic Normalized color spatial variances
subtracted by 1

F : , 1 0 Distribution heuristic Image center bias map
F : , 1 1 Clarity-based Normalized singular value feature

subtracted by 1

TABLE III
PAIRWISE FEATURES (IN MATRIX FORM) BETWEEN SUPERPIXELS

FROM EDGE SETS EB AND Ex |x∈{1:T }

Notation Categorization Description

S1 , S2∼T + 1 Color-based Color similarity (S ( c )
i j ) from EB and

Ex |x ∈{1 :T }
ST + 2 , ST + 3∼2 T + 2 Color-based Histogram intersection (S (h )

i j ) from EB

and Ex |x ∈{1 :T }
S2 T + 3 , S2 T + 4∼3 T + 3 Edge-based Intervening edge cue (S ( e )

i j ) from EB and
Ex |x ∈{1 :T }

C. Definition of Unary and Pairwise Features 336

This subsection describes the unary saliency features (fi) and 337

the pairwise features (Sk
ij ) in the proposed C-CRF model. The 338

proposed formulation of pairwise potentials enables learning 339

importantce for different spatial ranges of graph connections. 340

All features used are summarized in Tables II and III. Details 341

are given below: 342

1) Unary Saliency Features: Unary saliency feature vector 343

fi ∈ Rd is initial description for the saliency level of vi . Each 344

component of fi is a type of pre-computed saliency feature, 345

where regions correspond to larger components are more salient. 346

Recall that F ∈ Rn×d is the feature matrix whose row is fT
i . 347

Thereby a certain column of F can be regarded as a type of 348

feature map, denoted as F:,k , k ∈ {1 : d} (Fig. 4). The unary 349

saliency features considered in this paper fall into four types: 350

connectivity-based, contrast-based, distribution heuristics, and 351

clarity-based features, as given in Table II. 352

Connectivity-based features: Connected regions tend to be 353

perceived as one entity by human eyes, and regions that easily 354

connect to the image boundary are likely to be the background 355

[49]. The boundary connectivity is hence defined based on the 356

geodesic distance [49]. Computing geodesic distance between 357

superpixels and four image borders separately leads to four 358

feature maps, denoted as F:,1∼4 . The minimum geodesic dis- 359

tance between superpixels and image boundary leads to a single 360

feature map F:,5 . Since salient objects usually occupy small re- 361

gions as comparing to large areas of background, we compute 362
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Fig. 4. Feature maps of unary saliency features. From left to right: (a) Input images. (b)–(g) Features F:,1∼6 (connectivity-based features). (h)–(i) Features
F:,7∼8 (contrast-based features). (j)–(k) Features F:,9∼10 (distribution-based features). (l) Feature F:,11 (clarity-based feature). (m) Ground truth masks.

a type of feature which takes the region size into account. Let363

dgeo(vi, vj ) be the geodesic distance between superpixel vi and364

vj , the geodesic affinity [50] between vi and vj can be defined365

as Aij = exp(− d2
g e o (vi ,vj )

2σ 2
g

) (σg is set according to [50]). Then366

we compute the spanning area associated with vi as
∑n

j=1 Aij .367

This definition of the region area avoids an explicit hard seg-368

mentation of image and is “soft”. Meanwhile it takes advantage369

of superpixels. Finally, F:,6 is formed by normalizing the span-370

ning area value within the range [0, 1.0] and then subtracting the371

result from 1.0. This fits the intuition that small object regions372

tend to be salient (Fig. 4(g).373

Contrast-based features: Global color contrast is an indicator374

for saliency [8], [54]. F:,7 is computed similarly to [54] by375

comparing the color contrast of a superpixel to other superpixels,376

where spatially nearer superpixels are rendered larger weights.377

Furthermore, we formulate F:,8 by computing the contrast of a378

superpixel vi to all the boundary superpixels as
∑

vj ∈B ||ci −379

cj ||2 , where ci and cj are the average colors of superpixel vi and380

vj , since boundary superpixels are likely to be the background381

[43], [49].382

Distribution heuristics: Salient objects tend to present com-383

pact color distribution [54], [55]. Taking into consideration of384

this, we compute a color distribution map [54], where spatial385

variances of colors are normalized and subtracted by 1.0 to form386

F:,9 . Furthermore, to describe the center-bias in human atten-387

tion [39], [56], F:,10 in our case is a parameter-free center-bias388

map computed by389

fi,10 = 1 − ||pi − pc ||2√
(lh/2)2 + (lw /2)2

(13)

where lh , lw are the height and width of the image, pi , pc are390

the spatial coordinates of vi and image center, respectively.391

Clarity-based feature: Photographers tend to put objects of392

interest in focus meanwhile defocus irrelevant background when393

making high quality photos. To characterize this, we consider394

the Singular Value Feature (SVF) [57], [58] that models the395

degree of blur. An input image is first split into l × l number396

of grids, and the SVF [57] is then computed from each grid397

and further assigned to the pixels in the grid. A superpixel-398

based map is obtained by averaging SVF of pixels in every399

superpixel. After normalizing all SVF values into [0, 1.0], they 400

are subtracted by 1 to achieve the final feature map F:,11 . This 401

describes focused objects as more salient. It is worth noting 402

that l ∈ {10, 20, 30} are used to consider different scales, and 403

feature maps are averaged to form F:,11 [Fig. 4(l)]. 404

Remarks: In total, unary saliency feature vector fi has 11 405

components (i.e., d = 11), with each dimension normalized into 406

[0, 1.0]. Fig. 4 shows examples of all feature maps visually. 407

Noting that some of the features mentioned above are employed 408

in existing work, however with different application context. We 409

reformulate and modify the above features to constitute a unary 410

feature matrix F for our C-CRF model. It is worthy noting our 411

model is generic and not limited to the above features. If needed, 412

more features can be easily integrated in such a way. 413

2) Pairwise Features: As summarized in Table III, we con- 414

sider color-based and edge-based pairwise features to capture 415

the interaction between superpixels. 416

Color-based features: For color-based pairwise features, 417

we consider the average-color similarity S
(c)
ij = e−λc ||ci −cj ||2 418

and the histogram intersection S
(h)
ij =

∑
k=1 min{�i,k , �j,k}, 419

where ci and cj are the average colors of vi and vj , and �i , �j 420

are the normalized color histograms from vi and vj . We obtain 421

quantized color histograms similarly to Cheng’s work [59] by 422

first dividing the color space into 83 = 512 bins. Color bins 423

that are occupied by 99% of image pixels are kept, whereas 424

pixels with discarded colors are then replaced by their nearest 425

colors. This reduces the dimension of histograms and makes the 426

computation more efficient. 427

Edge-based features: The edge-based feature is defined as 428

S
(e)
ij = e−λe maxi ′∈ī j ||fi ′ ||, where īj is a straight line connecting 429

centers of vi and vj on the image plane, i′ is a pixel on īj, 430

and ||fi ′ || is the edge magnitude at i′ that can be derived from 431

some edge detector. The rationale behind this feature is that 432

S
(e)
ij becomes small when there exists strong intervening edges 433

between two superpixels, meaning vi and vj are less likely to 434

have similar labels. We adopt the structured random forest-based 435

edge detector proposed in [60] as it produces multi-scale edges 436

with fast speed. It is worthy noting that in practice, although most 437

superpixels in an image have their centroids inside due to the 438

spatial compactness of SLIC superpixels [48], there may be few 439
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Fig. 5. Decomposition of graph edge connections in Fig. 3. The graph topology is decomposed into a boundary set EB and D0 = 1, 2, 3 sets E1 , E2 , E3 ,
which indicates that superpixels which are exactly one, two, and three nodes away are connected.

superpixels whose centroids are located out of them, resulting440

in less accurate intervening edge cue. Hence for such a case,441

a pixel location is sampled randomly inside each superpixel,442

and is used instead of the centroid to compute the edge-based443

features.444

Graph connection decomposition: To enable learning dif-445

ferent importance of different spatial ranges, the initial446

graph topology of G is partitioned into (T + 1) edge sets447

EB ,E1 , E2 , . . . , ET , where EB contains only boundary con-448

nections, whereas Ex|x∈{1:T } contains connections between su-449

perpixels that are exactly x nodes away. Such a graph decom-450

position is designed for properly representing different spatial451

ranges meanwhile avoiding an individual edge being counted452

multiple times. An example of such topology decomposition is453

shown in Fig. 5, where T = 3. For a specific type of connec-454

tions Ex|x∈{B,1,2,...,T }, three aforementioned pairwise features455

are calculated, leading to 3 × (T + 1) pairwise potentials (see456

Table III). For example, when specifying the maximum range457

T = 3 (Figs. 3 and 5), it typically results in 12 pairwise fea-458

tures corresponding to 12 matrices (S1∼12). The proposed graph459

decomposition enables C-CRF to automatically learn different460

weights for different ranges of connections. ϕk → 0 is equiva-461

lent to discarding a type of connections if their contribution is462

very little during learning.463

Remarks: Although some of the pairwise information above464

is employed by existing saliency work to build graph weights,465

they are usually used in an unsupervised fashion. In contrast, we466

combine the above features in a supervised way through learning467

a complete C-CRF. Besides, the advantage of our formulation of468

pairwise potentials is that it avoids the manual effort of tuning469

spatial connections. It has been observed in recent work [25],470

[27], [61], [62] that the ranges of spatial connections impact471

the final detection performance. Most of those models typically472

adopt non-local graph connections which are manually deter-473

mined. Choosing appropriate graph connections, however, is474

a non-trivial task and the optimal connection ranges can de-475

pend on the coarseness of superpixels in the image. By contrast,476

our technique enables one to specify a relatively large maximum477

range T and then automatically learn the corresponding weights478

of connections within T . By checking the weights, one can fur-479

ther decide whether extension or pruning of spatial ranges is480

needed.481

D. C-CRF Learning and Inference482

We formulate the C-CRF learning as follows: given N483

training images x1 ,x2 , . . . ,xN with their ground truth labels484

y1 ,y2 , . . . ,yN , learn C-CRF parameters α and ϕ. The reg- 485

ularized maximum conditional likelihood (RMCL) training is 486

adopted for C-CRF learning, which is equivalent to minimizing 487

(3) summed over all training images 488

min
α,ϕ

N∑

i=1

{
− log p(yi |xi) +

λ1

2
||α||22 +

λ2

2
||ϕ||22

}

s.t. αk > 0, ϕk ≥ 0

(14)

where λ1 and λ2 are regularization parameters (pre-tuned). The 489

optimal solution can be found by using gradient descent [28], 490

[29]. Due to the constraints αk > 0 and ϕk ≥ 0, we apply gradi- 491

ent descent iteratively on log αk and log ϕk during the optimiza- 492

tion. Let the gradient of the energy loss in (14) w.r.t. log αk and 493

log ϕk be ∇log αk
and ∇log ϕk

, respectively. Here by dropping 494

the summation operation for notation simplicity, the derivation 495

of ∇log αk
and ∇log ϕk

is written as 496

∇log αk
= αk

{
∑

i

(yi − fi,k )2 +
∂ log Z(x)

∂αk
+ λ1αk

}
(15)

∇log ϕk
= ϕk

{
yTLky +

∂ log Z(x)
∂ϕk

+ λ2ϕk

}
(16)

where further according to (11) and use the notations in (10), 497
∂ log Z (x)

∂αk
can be computed 498

∂ log Z(x)
∂αk

= − 1
2|A|

∂|A|
∂αk

+
∂bTA−1b

∂αk
− ∂c

∂αk
(17)

∂|A|
∂αk

= |A|Tr(A−1) (18)

∂bTA−1b
∂αk

= FT
:,kA

−1b − bTA−1A−1b+bTA−1F:,k (19)

∂c

∂αk
= ||F:,k ||22 (20)

and ∂ log Z (x)
∂ϕk

can be computed 499

∂ log Z(x)
∂ϕk

= − 1
2|A|

∂|A|
∂ϕk

+
∂bTA−1b

∂ϕk
(21)

∂|A|
∂ϕk

= |A|Tr(A−1Lk ) (22)

∂bTA−1b
∂ϕk

= −bTA−1LkA−1b. (23)
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Fig. 6. C-CRF learning outcomes. (a) The overall energy changes of (14) regarding to iterations. (b) The learned α. (c) The learned ϕ (T = 4 case). The
notations of features in (b) and (c) are consistent with those in Tables II and III.

When α and ϕ are learned, the saliency inference of C-CRF500

on a new test image is achieved by minimizing (9). Setting501

∂E(y,x)/∂y = 0 leads to the closed-form solution502

y =

(
eTαI +

h∑

k=1

ϕkLk

)−1

Fα

= A−1b.

(24)

In (24), the invertibility is guaranteed, since αk > 0, ϕk ≥ 0,503

and Lk is positive semi-definite. Finally, we normalize y into504

[0, 1.0] to render a final saliency map. After the normalization,505

we ensure at least one superpixel has value 1 and at least 10%506

superpixels have values 0.507

A diffusion perspective of C-CRF: Interestingly, the above508

closed-form solution of the C-CRF inference coincides with the509

unified formulation of diffusion-based saliency methods raised510

in [27], where (eTαI +
∑h

k=1 ϕkLk )−1 = A−1 is the diffu-511

sion matrix and Fα is the integrated saliency “seed vector” that512

leads to a raw saliency map. The optimal solution (inference) is513

the product of the diffusion matrix and a saliency seed vector,514

leading to the equilibrium state vector as the diffused saliency515

detection results. However, comparing to [27], we have inves-516

tigated a different framework—C-CRF, with a totally different517

learning strategy.518

V. EXPERIMENTS AND RESULTS519

A. Setup520

Six benchmark datasets were used for our tests, including:521

ASD [7] (1000 images), MSRA-B [24] (5000 images), ECSSD522

[56] (1000 images), SOD [63] (300 images), SED1 (one-object523

image set having 100 images) [64], and SED2 (two-objects im-524

age set having 100 images). Training images were chosen from525

MSRA-B. Since the ASD dataset is a subset of MSRA-B, in or-526

der to evaluate the performance on ASD, we first exclude images527

that belong to ASD from MSRA-B, resulting in 4000 images528

remained. Then we randomly select 3000 images for training529

and leave the other 1000 images as the MSRA-B test set. The530

trained C-CRF on this dataset is then applied to other datasets.531

C-CRF parameters α and ϕ to be learned were initialized as all-532

one vectors. The regularization parameters λ1 = 1 and λ2 = 5 533

were set. Since performing the gradient descent on 3000 train- 534

ing samples are tractable, we used the gradient descent instead 535

of stochastic gradient descent for learning, in order to achieve 536

more stable convergence. The learning rate was set as 1 × 10−5 , 537

and the convergence was achieved after 200 iterations. 538

During feature extraction, each image was segmented into 539

n ≈ 200 superpixels. The maximum graph range T was ini- 540

tially set to 4 but then pruned to 3 according to the learning 541

outcomes (see Section V-B for details). Besides, all parameters 542

for individual unary and pairwise features were empirically set 543

(λe = 10 and λc = 10 were set for pairwise features). 544

B. Learning Outcomes 545

Fig. 6 shows the learning results of the C-CRF. From Fig. 6(a), 546

one can see that the overall energy decreases monotonously as 547

gradient descent proceeds and has reached a stable minimum. 548

Due to the continuous property of C-CRF, (1) computed on 549

some images might be larger than 1.0 and it would result in 550

a negative log-likelihood. This is why in a) the overall energy 551

turns negative as iteration proceeds. This phenomenon on C- 552

CRF is different from D-CRF since the solution space of the 553

latter is finite and countable. Hence for D-CRF, (1) will result 554

in a probability value instead of a probability density value. 555

Fig. 6(b) and 6(c) show the learned α and ϕ, respectively. The 556

learning results in Fig. 6(b) indicate that the geodesic features 557

F:,1∼5 are the most informative ones, which have gained large 558

weights. Among them F:,5 is the most important one. Follow- 559

ing that, the contrast to image boundary (F:,8) and color spatial 560

distribution (F:,9) gain larger weight than the global contrast 561

(F:,7) and center-bias (F:,10). This observation is somewhat 562

consistent with [27] where the center bias feature does not ap- 563

pear in the top among the listed features. The last feature F:,11 564

(clarity-based) has obtained the lowest weight. The cause of 565

this is that like most blur detectors, the SVF is based on local 566

gradient and has limitation in distinguishing between smooth 567

object surfaces and real blurred image regions [e.g., the 1st row 568

of Fig. 4(l)]. 569

Fig. 6(c) shows the learned ϕ when setting maximum spa- 570

tial range T = 4. One can see the learned weights of pairwise 571
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Fig. 7. Quantitative comparisons (precision-recall curves and Fβ scores) of the proposed method (C-CRF) to the state-of-the-art methods on six benchmark
datasets. The best and the second best Fβ are underlined by red and blue.

features decrease as the spatial range D0 increases. This meets572

the common sense since spatially close superpixels should573

have strong interaction, but noting that such relationship in574

our method is automatically learned rather than handcrafted.575

Besides, highly degraded weights (close to zeros) for features576

S4 , S9 , S14 that correspond to D0 = 3 and for features S5 ,577

S10 , S15 that correspond to D0 = 4 reveal further extending578

the maximum spatial range to T ≥ 4 under the current exper-579

imental setup is not essential. Considering when D0 = 4, the580

corresponding weights are very low. In practice we prune the581

spatial range and use T = 3, as shown in Figs. 3 and 5. As582

shown in Fig. 6(c), the intervening edge cues (S11 ∼ S15) are583

the most informative ones among all pairwise features. They584

generally gain larger weights than color similarity (S1 ∼ S5)585

and histogram intersection (S6 ∼ S10). This validates that in-586

corporating the edge cues makes contribution. Finally, large587

weights of boundary connections (S1 , S6 , S11) reveal connect- 588

ing boundary superpixels is useful. 589

C. Comparison to Existing Methods 590

We compare the proposed saliency detection to 11 ex- 591

isting methods including: LD (Learning to Detect) [24], 592

HS (Hierarchical Saliency) [56], SA (Saliency Aggregation) 593

[26], DRFI (Discriminative Regional Feature Integration) 594

[43], GMR (Graph-based Manifold Ranking) [25], wCtrO 595

(background weighted Contrast with Optimization) [50], ST 596

(Saliency Tree) [65], MB+ (Minimum Barrier Saliency) [66], 597

TLLT (Teaching-to-Learn and Learning-to-Teach saliency) 598

[51], BSCA (Background-based Single-layer Cellular Au- 599

tomata) [52], BL (Bootstrap Learning) [44]. Among them, LD 600

[24], SA [26], GMR [25] are CRF-related methods listed in 601
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Fig. 8. Precision-recall curves of individual unary features on ASD (left) and
ECSSD (right).

Table I. Unfortunately, the authors of SA only provide their602

results on ASD dataset. Therefore, we can only evaluate SA603

on ASD. Besides, the code of [27] is not publicly released, so604

the results cannot be compared. For all the compared methods,605

we use the public available implementations/results provided by606

the authors. Precision-recall curve and Fβ -measure are used for607

evaluating the overall performance [7], [25].608

Fig. 7 shows the results of precision-recall curves and Fβ609

scores. The proposed method (C-CRF) is comparable to state-610

of-the-art methods on both criteria, which has validated the611

effectiveness of learning a C-CRF for saliency detection. No-612

tably, our method outperforms C-CRF related methods LD, SA,613

GMR together with other state-of-the-art methods with notice-614

able margins. Regarding to the Fβ , our method consistently615

achieves 1st on ASD, SED2, and the 2nd on ECSSD, MSRA-B616

(test set) and SOD. Another data-driven method DRFI some-617

times performs better than our method, which may be due618

to different feature extraction and learning strategies. Visual619

comparisons are shown in Fig. 11.620

D. Integration of Features/State-of-the-Art Models621

Since C-CRF is employed in this study as a principled feature622

integrating framework, its performance on integrating various623

unary and pairwise features should be evaluated. Fig. 8 shows624

the precision-recall curves of unary features on ASD and EC-625

SSD. One can see that the individual features vary widely on626

performance, and among them F:,5 (which computes the min-627

imum geodesic distance to image borders) achieves the best628

results. This coincides with the learning outcomes from MSRA-629

B, where F:,5 gains the highest weight. Observing Fig. 8, the630

weighted sum of features (the raw map computed by Fα)631

outperforms all individual features, but the improvement is632

relatively marginal. In contrast, the performance is boosted633

drastically by a complete C-CRF.634

To validate the effectiveness of learning for pairwise features,635

we treat the C-CRF inference stage (24) as a diffusion process636

and replace its diffusion matrix A−1 with the propagation matrix637

used in GMR [25]. Note GMR is related to C-CRF but with-638

out learning (Table I). Its propagation matrix merely consid-639

ers the similarity of average colors between superpixels, which640

Fig. 9. Effectiveness of integrating pairwise features, validated on ASD (left)
and ECSSD (right). In this test, the same “seed” vector Fα is used.

intuitively is less effective on representing more sophisticated 641

interaction between neighboring superpixels, such as fine- 642

grained color information and texture differences. Fig. 9 shows 643

the results of this experiment, which validate such an intuition. It 644

can be seen that by using the same “seed vector” (Fα), the diffu- 645

sion technique employed by [25] is inferior to C-CRF exploited 646

in this paper. 647

Besides, we validate the power of integrating state-of-the-art 648

methods by C-CRF, where 5 models are considered: HS, DRFI, 649

GMR, wCtrO, and MB+. The resulting saliency maps from 650

these five models are used as the unary feature maps, which are 651

converted into superpixel-wise maps by averaging pixel-wise 652

saliency. The C-CRF is then re-trained. Fig. 10 shows the C- 653

CRF integration performance on ASD, MSRA (test set) and 654

ECSSD, where the performance boost over individual methods 655

can be observed on all three datasets. Some visual results from 656

this experiment are in Fig. 11. 657

E. Effectiveness of Graph Topology Decomposition 658

To show the advantages of learning weights adaptively for 659

different spatial ranges, we compare to the C-CRF variants 660

without graph topology decomposition but with manually spec- 661

ified graph ranges. Here 1-ring graph, 2-ring graph, and 3-ring 662

graph are considered. Noting an x-ring graph means a superpixel 663

(graph node) is connected to superpixels within its x-ring neigh- 664

borhood [25], [27], [61]. Besides, in each graph, the boundary 665

superpixels are connected with each other as in this paper. For 666

each one of the three graphs, the three types of pairwise features 667

namely two color-based (S(c)
ij , S

(h)
ij ) and one image edge-based 668

(S(e)
ij ) as described in Section IV-C are calculated, resulting 669

in 3 matrices (S(c) ,S(h) ,S(e)) for each graph. Except for the 670

graph ranges, all other C-CRF configurations including unary 671

features and parameters are kept consistent with Section V-A. 672

Then for each graph, C-CRF is re-trained and used for saliency 673

prediction. Fig. 12 shows the quantitative comparison between 674

the above three graphs and our graph topology decomposition. 675

It can be observed that the proposed strategy performs more 676

robustly than an x-ring graph which is manually specified. 677

F. Robustness to The Number of Superpixels 678

Experiments were done by varying superpixel number from 679

100 to 300, and meanwhile keeping other setup the same as 680
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Fig. 10. Integrating five state-of-the-art methods including HS, DRFI, GMR, wCtrO, and MB+ by the proposed C-CRF based framework. The best Fβ are
underlined by red.

Fig. 11. Qualitative comparison of the proposed method with existing methods on some challenging images with textured background. C-CRF refers to results
by integrating different unary saliency features. C-CRF(I) refers to results obtained by integrating five prior models (HS, DRFI, GMR, wCtrO, and MB+), as
demonstrated in Section V-D.
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Fig. 12. Quantitative comparisons of one-ring, two-ring, and three-ring graphs and our graph topology decomposition on four benchmark datasets.

Fig. 13. Quantitative evaluation on MSRA test set (top left) and ECSSD
(top right) by using different superpixel numbers. In the bottom some visual
comparisons are shown: (a) 100 superpixel case, (b) 200 superpixel case, and
(c) 300 superpixel case.

those mentioned in Section V-A. Next, we re-trained the C-681

CRF model on the training set and then tested it on MSRA-test682

and ECSSD. Note there are two sides of effect when varying683

superpixel number: 1) It somewhat affects the computed unary684

and pairwise features. Fewer superpixels lead to coarser image685

representation. Fortunately, we observed some robustness of686

computing unary features F:,1∼11 to such a change. 2) It also687

affects the “scale” of the C-CRF objective function, because688

the dimension of all vectors and matrices involved will change689

accordingly.690

Observing the learning outcomes, we find the overall distri-691

bution (or tendency) of learned α and ϕ is still similar to that in692

Fig. 6. Fig. 13 shows the evaluation on MSRA-test and ECSSD693

by using different numbers of superpixels, where robustness to694

such change can be observed. Using 100 superpixels leads to695

slightly worse performance as the superpixels become coarser696

and hence the pre-segmentation is less accurate. Using 200 su-697

perpixels and 300 superpixels almost leads to identical perfor-698

mance. Some visual comparisons are shown in Fig. 13. In all, the699

C-CRF learning and inference is somewhat robust to superpixel700

number, therefore graph node numbers. No matter what setup 701

is adopted, C-CRF will learn the optimal feature combination 702

under the current setup. 703

G. Efficiency 704

Though the training based on gradient descent from the off- 705

line extracted features on 3000 images from MSRA-B took 706

about 4 h, the C-CRF prediction was very fast due to the closed- 707

form solution. It only took 2s in average to process an image 708

from ASD dataset. The superpixel segmentation and attribute 709

extraction (e.g., superpixel colors and histograms) took 0.4 s. 710

The unary feature extraction took 0.45 s, and the pairwise fea- 711

ture extraction took 1.1s including edge detection. The running 712

time was reported on an i7-4720HQ 2.6 GHz laptop with 8 GB 713

memory by Matlab code without optimization. 714

H. Discussion About the Limitation 715

Though our C-CRF learning-based method enables effective 716

feature integration and meanwhile boosts the performance from 717

individual saliency features (Fig. 8), the major limitation is its 718

final detection somewhat relies on the quality of input features. 719

If none of the unary saliency features provide reasonable ini- 720

tial saliency estimation, the C-CRF inference will still be bad. 721

Conversely, good features will improve the final detection. This 722

phenomenon can be observed by comparing the quantitative re- 723

sults in Figs. 7 and 10, where employing the state-of-the-art 724

results as unary features leads to better C-CRF inference. A 725

visual example can be found in the 10th row of Fig. 11. One po- 726

tential solution to this is to enrich features in the feature pool and 727

let the C-CRF discover useful, effective ones through learning. 728

VI. CONCLUSION 729

This paper applies the complete learning and inference theo- 730

ries of continuous conditional random field (C-CRF) to salient 731

object detection. The regularized maximum conditional like- 732

lihood training by gradient descent optimization is used for 733

parameter learning, and the inference is achieved by an effi- 734

cient closed-form solution. The power of the proposed method 735

on integrating various unary and pairwise features is tested and 736

evaluated comprehensively. In addition, we propose a novel 737

formulation of pairwise features by graph topology decomposi- 738

tion. The effectiveness on enabling learning weights of different 739

spatial ranges is validated with reasonable learning outcomes. 740

Experimental results and comparison with 11 existing meth- 741

ods show that the proposed method achieves state-of-the-art 742
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performance on precision-recall curves with comparable Fβ -743

measure scores. Since the proposed method enables principled744

feature integration, in the future some high-level features such as745

the category-dependent or semantic features may be incorpo-746

rated into the proposed method as top-down influences.747

REFERENCES748

[1] A. M. Triesman and G. Gelade, “A feature-integration theory of attention,”749
Cognitive Psychol., vol. 12, no. 1, pp. 97–136, 1980.750

[2] C. Koch et al., “Shifts in selective visual attention: Towards the under-751
lying neural circuitry,” in Matters of Intelligence. New York, NY, USA:752
Springer-Verlag, 1987, pp. 115–141.753

[3] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention754
for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,755
no. 11, pp. 1254–1259, Nov. 1998.756

[4] X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,”757
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2007, pp. 1–8.758

[5] N. Bruce and J. Tsotsos, “Saliency based on information maximization,”759
in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 155–162.760

[6] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE761
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 185–207, Jan. 2013.762

[7] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-tuned763
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