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a b s t r a c t

The goal of salient object detection from an image is to extract the regions which capture the attention of
the human visual system more than other regions of the image. In this paper a novel method is presented
for detecting salient objects from a set of images, known as co-saliency detection. We treat co-saliency
detection as a two-stage saliency propagation problem. The first inter-saliency propagation stage utilizes
the similarity between a pair of images to discover common properties of the images with the help of a
single image saliency map. With the pairwise co-salient foreground cue maps obtained, the second intra-
saliency propagation stage refines pairwise saliency detection using a graph-based method combining
both foreground and background cues. A new fusion strategy is then used to obtain the co-saliency
detection results. Finally an integrated multi-scale scheme is employed to obtain pixel-level co-saliency
maps. The proposed method makes use of existing saliency detection models for co-saliency detection
and is not overly sensitive to the initial saliency model selected. Extensive experiments on three
benchmark databases show the superiority of the proposed co-saliency model against the state-of-the-
art methods both subjectively and objectively.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Visual saliency of the human or machine visual system serves
as a filter for selecting a certain subset of visual information for
further processing. The results of saliency detection are saliency
maps which enhance salient objects while suppressing back-
ground objects. Saliency detection has applications in many fields
including objects segmentation [1,2], content based image editing
[3–5], image retrieval [6], image compression [7] and video sum-
marization [8–10]. Existing saliency detection models however
mainly detect salient objects from a single image [11–14], and the
information of similar salient objects in a sequence of images is
not exploited.

The concept of co-saliency has been proposed to select com-
mon salient objects from a sequence of images [15–21]. Co-sal-
iency detection satisfies the following two properties: (1) co-
salient regions should be salient regions in the image and (2) all
co-salient regions from different images should share similar
characteristics. Because co-saliency maps highlight similar fore-
ground objects, they naturally can be used in many applications
such as object co-segmentation [22], co-recognition [23] and
common pattern discovery [24].

Most of current co-saliency models [16–19] split the co-salient
object detection problem into single-image saliency detection and
multi-image saliency detection, to discover what the salient object
is within each image and how frequently the salient object occurs
across the images. Various features are used such as texture de-
scriptors [16], corresponding feature [17], and color histograms
[18,19] to solve the co-saliency detection problem. Such low-level
features are not enough to describe the properties of co-salient
objects, leading to unsatisfactory co-saliency detection results. To
overcome the difficulties, recently Li et al. [21] directly use single
image saliency maps to find co-salient objects based on the fact
that co-salient objects in an image sequence should also be salient
in each image. In their method, single image saliency maps are
exploited to highlight salient objects through stage-one manifold
ranking. Thereafter, the foreground of each image is probed to find
similar regions in other images through stage-two manifold
ranking. The problem with the method is that it is unable to
highlight the co-salient object and suppress the background in-
formation simultaneously. The co-saliency detection result is ea-
sily affected by inaccurate foreground maps obtained by stage-one
manifold ranking. If the foreground and background have similar
colors, background regions will be highlighted as well, leading to
unsatisfactory detection results.

In this paper we propose a novel saliency propagation frame-
work to fulfill the co-saliency detection task. Under this frame-
work co-salient foreground and background cues are separately
acquired to enhance the co-salient object. A preliminary con-
ference version of our work has appeared in [25]. Unlike the
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Fig. 1. The performance of [21] and ours. (a) source images; (b) results of [21]; (c) results of our method; (d) ground truth.

C. Ge et al. / Signal Processing: Image Communication 44 (2016) 69–8370
method described in [21], the proposed inter-saliency propagation
uses superpixel similarity between two images to obtain the
foreground cue with the help of a single image saliency map. This
is more effective for characterizing objects and preserving edges
than pixel-level ranking. Background cue is obtained in-
dependently from each image considering both the background
connectivity and saliency mask, followed by a graph-based intra-
saliency propagation combining both foreground and background
cues with a new edge constraint. As shown in Fig. 1, the red soccer
players are co-salient objects among all the five images and the
proposed model surpasses [21] in both foreground enhancement
and background suppression.

The main contributions of this paper are as follows:

� A novel inter-saliency propagation method is proposed to
transmit saliency values between two images to find the co-
salient foreground cue.

� A new intra-saliency propagation method is presented which
simultaneously highlights co-salient objects, suppresses back-
ground information and smooths saliency values with edge
constraint.

� A new fusion strategy is proposed combining the intra-saliency
propagation maps to obtain the final co-saliency map, adap-
tively weighed by a rough co-saliency approximation.

The paper is organized as follows. We describe the related work
in Section 2. The proposed approach is presented in Section 3.
Experimental results are shown in Section 4 and finally we con-
clude in Section 5.
2. Related work

Saliency detection methods can be divided into two major ca-
tegories: human fixation prediction [26,27] and salient object
detection [28–30,11,31–35]. Fixation prediction models usually
simulate how human attention focus on an image. This produces a
saliency distribution map based on the focus points of the eye.
Salient object detection models focus on detecting salient regions
of the whole image. The outcome saliency map reflects the sal-
iency probability of each pixel, which can be regarded as a soft
segmentation of salient objects.

Saliency detection from a single image has been an active re-
search area for decades. Itti et al. [36] propose a neural network
based saliency model integrating three features and multiple
scales. Zhai et al. [37] introduce the image histograms in lumi-
nance channel to measure saliency. Pixel-level saliency is com-
puted by the luminance contrast. Hou et al. [28] utilize the spectral
residual in the amplitude spectrum of the Fourier transform to
compute saliency. Guo et al. [38] propose that the phase spectrum
of Fourier transform instead of the amplitude transform is the key
in obtaining the location of salient areas. Achanta et al. [39] pro-
pose to define pixel saliency using color difference from the image
average color, which is equivalent to combining center-surround
differences from different scales. Goferman et al. [5] use local and
global features to estimate the patch saliency in multi-scales. Vi-
sual organizational rules and high-level factors are also considered
to enhance the saliency map. Cheng et al. [29] propose histogram
and region contrast methods to enhance salient objects. In [30],
Perrazzi et al. propose to combine the uniqueness of locally con-
strained regions and the spatial distribution of regions. Fu et al.
[11] present a comprehensive salient object detection system
taking advantage of both color contrast and color distribution.
Most of the methods mentioned above are simple to implement
but cannot always highlight all pixels on the salient objects when
the background is complex. By considering the connectivity of
background regions, Wei et al. [31] use the shortest path towards
the boundary to define the saliency value for each region. Such
boundary prior is based on the assumption that boundary parts of
an image will most likely belong to the background. Later the
graph-based manifold ranking [32] is proposed to compute region
saliency according to its relevance to boundary patches. Yan et al.
[33] present a hierarchical saliency method which merge regions
according to user-defined scales to eliminate small-size distracters.
A novel learning based method [34] exploits a random forest re-
gressor to map multiple features to the saliency value of the
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region. The fundamental is to learn the weights of discriminative
features from each segmented region. In [35], Zhu et al. propose a
robust geodesic distance assisted boundary measure, followed by
an optimization procedure to highlight the contrast between
background and foreground.

Co-saliency models usually start with detecting salient objects
in a pair of images. In [40], the local structure changes caused by
salient objects are utilized to obtain the co-saliency, and the
constraint is that the two images need to have highly similar
backgrounds. In [15], the joint information provided by the image
pair is used under a pre-attentive scheme, meaning that co-salient
object regions are detected before focused attention on individual
objects. In [16], co-saliency is formulated as a combination of
single-image saliency maps using the three available saliency
models, and the co-multilayer graph based multi-image saliency.
Co-saliency detection is not limited to image pairs. In [17], cluster-
based co-saliency model is proposed by fusing contrast, spatial
and corresponding cues. On the basis of hierarchical segmentation,
Liu et al. [18] use the regional similarity measure to generate co-
salient maps. Object prior and pixel-level refinement [19] which
measures color-spatial similarity between pixel and region are also
used to achieve better result. Cao et al. [20] generate the co-sal-
iency map through adaptively weighed saliency maps with rank
constraint. As the common salient object appears in most images,
in [21], the two-stage efficient manifold ranking strategy aims to
detect repetitive salient objects. Similar work on co-saliency
Fig. 2. The framework of the proposed co-saliency model. Second column: results after
guided by different group members. The intermediates of the first image are shown as a
are also displayed.
detection is co-segmentation which aims to segment the common
regions from multiple images [22,41,42]. Co-segmentation needs
several object-like proposals obtained in advance, and the seg-
mentation process usually proceeds in supervised or weakly su-
pervised manner. Different from co-saliency detection, the task of
co-segmentation is to extract certain common objects no matter
they are salient or not. In practice, co-saliency may serve as an pre-
processing [22] step for co-segmentation by taking co-saliency
maps as object-like proposals.
3. The proposed method

The proposed co-saliency model for salient object detection
produces saliency maps containing the co-salient regions. Our
novelty lies in proposing a two-stage saliency propagation fra-
mework, which is inter-saliency propagation and intra-saliency
propagation respectively, to detect the co-salient objects in the
image group. New techniques are used in co-salient foreground
cue selection, background information exclusion and saliency
smoothing. At last a new fusion strategy is proposed to guarantee
satisfying results. The framework of the proposed model is illu-
strated in Fig. 2. It consists of four main steps: pre-processing,
inter-saliency propagation, intra-saliency propagation and co-sal-
iency integration. Details of the proposed model are given below.
pre-processing. Third column: inter-saliency propagation maps of the first image
n example, in red boxes. Final co-saliency detection results of other group members
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3.1. Pre-processing

Each image in a given image set { } =Im m
M

1 is first segmented into
Km superpixels [43]. Each superpixel of the mth image is labelled as
( = … )i i K1, , m , its mean color in LAB space is denoted as ci

m, and
its mean 2D position vector is donated as pi

m. As the proposed
model depends on the single image saliency map, we adopt the
initial saliency value ( )S io

m of ith superpixel from mth image gen-
erated by superpixel based method [32]. Other state-of-the-art
saliency models can also be applied, as the final co-saliency per-
formance does not heavily rely on the initial model. As shown in
Fig. 2, superpixel-based single image saliency maps fail to high-
light the whole body of the salient cheetahs because of the
boundary prior used in [32]. Therefore, a new co-saliency detec-
tion strategy based on two-stage saliency propagation is proposed
to highlight the co-salient object of all images.

3.2. Inter-saliency propagation

We propose to obtain pairwise co-salient foreground cue using
a novel inter-saliency propagation method, which transmits the
saliency value from the guiding image to the guided one according
to their color similarity. Each superpixel in the guided image is
compared separately with all the superpixels of the guiding image.
Taking the mth image as example, if it is to be guided by the nth
image, its inter-saliency propagation by the

( = … ≠ )n n M n m1, , ,th image is formulated as follows:
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2 denotes the color similarity between
superpixel i of mth image and superpixel j of nth image, and α is
empirically chosen as 10. gm(i) is a center bias term highlighting
superpixels locating near the center of an image, and pc

m re-
presented the center position of the mth image. The standard de-
viation s1 is set to one-third of the longest dimension of the input
image. Even if there is more than one salient object in the image,
the center bias will work because salient objects are less likely to
locate at all the four image corners. The rationale is that photo-
graphers tend to locate the object at an image center and human
fixation has much higher probability to fall onto the center area of
an image. By searching all the superpixels in the nth image, the mth

image's raw saliency guided by the nth image is decided by color
similarity weighed by initial saliency values. This simple but ef-
fective procedure propagates the initial saliency values from the
guiding image to the guided image, enabling similar colored su-
perpixels of different images to have the similar saliency values. If
the mth image has the same salient object as the nth image, the
common salient object will be highlighted in the raw inter-sal-
iency propagation map →Sraw

n m.
Geodesic distance is a more continuous measure [44,45] to

define how well any two superpixels are spatially connected
compared to traditional Euclidean distance. As the above color
similarity based propagation may be sensitive to color fluctuation
even within the homogeneous region, a geodesic distance based
smoothing strategy is adopted to refine the raw intra-saliency
propagation maps. We connect all adjacent superpixels to create
an undirected graph and assign the edge value as the distance
between adjacent superpixels in LAB space. The geodesic weight

( )w i j,geo
m is then defined as [44,45] to give two superpixels a large

weight if their geodesic distance is small. We present the
smoothed inter-saliency propagation map as:
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Each image in the image group take turns to guide other ima-
ges to generate the inter-saliency propagation maps. For example,
if the mth image is selected as the guided one, it will get −M 1
inter-saliency propagation maps guided by other group members
denoted as ( = … ≠ )→S n M n m1, , ,inter

n m . The inter-saliency propa-
gation is like the retrieving process, once the guided image con-
tains the common salient object, most of its inter-saliency pro-
pagation maps will highlight the same objects because most other
guiding images contain the same salient object. As shown in Fig. 2,
the cheetahs are the co-salient objects according to the five ima-
ges, but single image saliency model fails to highlight the whole
body of the cheetah. After inter-saliency propagation between
image pairs, the co-salient cheetah in the first image has roughly
emerged, indicating that the proposed inter-saliency propagation
effectively transmit saliency values between the co-salient objects.

3.3. Intra-saliency propagation

Fig. 2 shows that inter-saliency propagation maps are not quite
satisfactory. The reasons are that inter-saliency propagation is able
to highlight the common salient object but lacks the ability of fully
suppressing background. In the inter-saliency propagation section,
we mainly focused on what the co-salient object is. Since each
image contains not only the co-salient object but also its own
background information, we propose to obtain the background cue
according to boundary connectivity prior and saliency mask.
Boundary connectivity prior [35] measures how heavily a super-
pixel is cropped on the image boundary. The prior ( )P icon

m is close to
1 if the superpixel i is deemed as background and is close to 0 if
deemed as belonging to an object:
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where σ = 12 is set as [35] and δ (·) = 1 if the superpixel j is on the
image boundary and 0 otherwise. For the initial saliency map of
the mth image So

m, an OTSU [46] threshold thm is employed to
distinguish the foreground and background, and the saliency mask
is obtained as follows:
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The background cue for the mth image is then constructed by
combining the boundary connectivity prior and saliency mask:

= ⁎ ( )w P Mask 7bg
m

con
m

m

We improved the boundary connectivity prior by filtering it with
a mask derived from the initial saliency map. Note that the boundary
connectivity prior may wrongly emphasize the foreground with a
large value sometimes if the foreground region is cropped on the
image boundary. The saliency mask lets the salient region remain
foreground in the background cue (by assigning it as 0), which makes
the background cue better characterize the backgroundness.

Unlike traditional co-saliency models [17–21], the proposed
intra-saliency propagation first takes both co-salient foreground
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cue and background cue of each image into consideration to
highlight co-salient object, suppress background information and
smooth saliency values simultaneously. Propagated saliency values
are obtained by minimizing a graph-based regularization energy
function [35], which is formulated as follows:
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The three terms of the energy function are for the background
cue, co-salient foreground cue and smoothness constraints re-
spectively. The background term encourages superpixel i with
large background cue wi

bg ( = ( )w w ii
bg

bg
m ) to take a small value

(close to 0). The inter-saliency propagation map is taken as the co-
salient foreground cue ( = ( )→w S ii

fg
inter
n m ), and the foreground term

encourages superpixel i with large co-salient foreground cue wi
fg

to take a large value(close to 1). The smoothness term encourages
continuous saliency values. si and sj are the saliency values of su-
perpixel i and j.

We propose a new edge cue to compute the above smoothness
weight wij. First an undirected graph is constructed not only
linking the adjacent superpixels, but also linking neighbor's
neighbor. Besides, arbitrary boundary superpixels are connected
with each other. Such kind of close-loop graph in Fig. 3(a) can
significantly smooth saliency values because the distance of si-
milar superpixels is reduced. Traditionally the graph edge wij is
defined based on only color similarities [32]. We argue that only
the color information is unlikely to distinguish the object from the
background if they have similar color but distinguishable textures.
Thus a new edge cue is proposed, which is complementary to the
color cue in such challenging cases. The newly defined graph
smoothness weight combining both color and edge cues is pre-
sented as follows:
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j
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where ij is the straight line connecting the centers of the super-
pixel i and j on the image plane and ′i is a pixel on ij. We utilize an
edge detector [47,48] to get an edge map as illustrated in Fig. 3(b).
The edge map displays high contrast in the object contour to the
surrounding area, which is helpful to preserve the object edge. ′fi is
the edge magnitude of ′i derived from the edge map. The edge cue
indicates that if strong intervening boundaries or edges exist be-
tween two superpixels, their edge cue will be small, in other
words they have less possibility to belong to the same object. λc
Fig. 3. Graph construction and intra-propagation components. (a) Superpixel segmentat
foreground cue map; (e) intra-saliency propagation map.
and λe control the similarity of color cue and contribution of the
edge cue respectively, and they are both empirically set to 10. By
simply multiplying the color cue with the edge cue, saliency value
will be smoothed only between superpixels sharing similar color
and texture. Eq. (8) can be rewritten in the matrix form as follows
to minimize the energy cost:

+ ( − ) ( − ) + ( − ) ( )x W x x W x x D W x1 1 10T
b

T
f

T

where Wf and Wb are the diagonal matrices with diagonal entries
be wi

fg and wi
bg, indicating the co-salient foreground cue and

background cue respectively, and 1 denotes the column vector
consisting of 1, the number of which is the same as the superpixels
of the mth image. W is the smoothing matrix composed of wij from
(9) and D is the degree matrix of W. x is the column vector with
elements of the intra-saliency propagation values to be computed,
which is equal to →Sintra

n m. The three terms of (10) are for the purpose
of highlighting co-salient object, suppressing background and
smoothing. By differentiating x the closed-form solution is
achieved as follows:

= ( + + − ) · ( )→ −S W W D W W 1 11intra
n m

b f f
1

As illustrated in Fig. 3, background cue map and co-salient
foreground cue map are complementary to each other. The back-
ground cue in Fig. 3(c) is effective in describing the back-
groundness though some parts of the cheetah body is wrongly
selected as background because these parts are overly connected
to the image boundary. The co-salient foreground cue in Fig. 3(c) is
good at separating the foreground from background but the whole
cheetah is not highlighted uniformly. After the intra-saliency
propagation, the cheetah has been highlighted, showing the
merits of combining both the foreground and background cues to
pop out co-salient object.

As for the guided image itself (the mth image), we directly take
its original saliency value as the foreground cue, and the back-
ground cue is computed as above. Its intra-saliency propagation
result is depicted as Sintra

m. Then we get all five intra-saliency
propagation maps displayed in Fig. 2. Slight differences exist
among them because they are guided by different group members.
Intra-saliency propagation maps show the refined results of pair-
wise guidance, which means that if the mth image contains the co-
salient object, it will be highlighted in most intra-saliency propa-
gation maps (Sintram and = … ≠→S n M n m, 1, , ,intra

n m ).
ion and graph segmentation; (b) edge map; (c) background cue map; (d) co-salient



C. Ge et al. / Signal Processing: Image Communication 44 (2016) 69–8374
3.4. Co-saliency integration

In this paper our algorithm is based on the principle that an
object is deemed co-salient only when it is salient in most intra-
saliency propagation maps. We will introduce a new fusion
strategy to combine all these intra-saliency propagation maps. The
simplest way of fusion is to average all these intra-saliency pro-
pagation maps, but it may bring in the negative impact of some
inaccurate intra-saliency propagation map highlighting some
unco-salient parts, such as some region salient but not co-salient
in the image set, or other meaningless background clutter. To
mitigate such limitation and consider the intrinsic relationship of
these components as suggested in [20] instead of using the fixed
combination weights, we propose the following novel fusion
strategy.

It is our belief that the average map of all intra-saliency pro-
pagation maps is a rough approximation of co-saliency. For the
superpixel i in the mth image, if it appears to be salient in most of
the intra-saliency propagation maps (Sintram and

= … ≠→S n M n m, 1, , ,intra
n m ), it will be regarded as co-salient and its

co-saliency is obtained by the fusion strategy. We sum up the
saliency values of superpixel i from all the intra-saliency propa-
gation maps weighed by the deviation from the average saliency.
The fusion favors the guided intra-saliency propagation results
close to the average saliency and penalizes those inaccurate ones
far away from the average saliency, and it is formulated as follows:
Fig. 4. An example showing the benefits of our fusion strategy. (a–c) Accurate intra-s
components; (f) original image; (g) fusion result by multiplying all components; (h) fus

Fig. 5. Comparison in each step of the proposed model on icoseg database. (a) βFw compa
final results; (b) βFw comparisons of various fusion methods including multiplying, avera
images among various fusion methods including multiplying, averaging, fusion method
( ) =
∑ ( ) + ( )

∑ ( )

= ≠
→

=

S i
w S i w S i

w 12
fusion
m n n m

M
n intra

n m
m intra

m

n
M

n

1,

1

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

(
σ

σ

=

−
( ) − ( ))

≠

− ( ( ) − ( )) =
( )

→

w

S i S i
n m

S i S i
n m

exp

exp
13

n

intra
n m

mean

m

intra
m

mean

m

2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑( ) = ( ) + ( )

( )= ≠

→S i
M

S i S i
1

14
mean

n n m

M

intra
n m

intra
m

1,

where sm is set to the standard deviation of ( )S iintra
m and

( ) ( = … ≠ )→S i n M n m1, , ,intra
n m . As can be seen from the fusion result

Fig. 1, the whole cheetah stands out after the fusion step. A more
extreme example showing the benefits of our fusion is in Fig. 4.
Fig. 4(a–e) are the components remaining to be fused, (a–c) are the
absolutely accurate components which are also ground truth, and
(d–e) are totally wrong components which are the inverse of
ground truth. As shown in Fig. 4(g), multiplying all the compo-
nents may lose some foreground parts if some components fail to
highlight the salient object, and averaging all these components is
aliency propagation components; (d and e) inaccurate intra-saliency propagation
ion result by averaging all components; (i) our fusion result; and (j) ground truth.

risons of our propagation based foreground, background, combined results and our
ging, fusion method [20] and our fusion strategy; (c) number of the most accurate
[20] and our fusion strategy.



Fig. 6. Visual exhibition of our propagation based foreground, background, combined results and our final results. (a) Original images; (b) foreground-induced maps;
(c) background-induced maps; (d) fusion maps, (e) our final maps, and (f) ground truth.

Fig. 7. Objective comparison of the proposed model with eight state-of-the-art saliency detection models on icoseg database. (a) PR curve comparison; (b) F-measure curve
comparison; (c) MAE comparison; (d) weighed precision, recall and F-beta comparison.
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Fig. 8. Subjective comparisons of the proposed model with eight state-of-the-art saliency detection models on icoseg database. (a) Original images; (b) GS [31]; (c) SF [30];
(d) MR [32]; (e) SO [35]; (f) CB [17]; (g) HS [18]; (h)RFPR [19]; (i) EMR [21]; (j) Ours; and (k) Ground truth.
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less good at suppressing the effect of inaccurate components. Our
fusion strategy reaches the closest result to ground truth in both
foreground rendering and background exclusion.

Finally the multi-scale scheme [49] is used to refine the su-
perpixel saliency values to pixel-level and handle the scale pro-
blem. Superpixels are generated at Nl different scales initially for
subsequent processing, and in this paper we choose the 200, 300,
400 superpixel segments. After getting the final superpixel-level
co-saliency results at different scales, we use the weighted sum-
mation to obtain the pixel-level saliency value as follows. The
weights are determined by how similar a pixel is to the superpixel
containing it in LAB color space:
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where ( )Sn l is the co-saliency result at scale l, fz is the LAB feature of

pixel z, ( )n l denotes the label of the superpixel containing pixel z at
scale l and ( )cn l is its corresponding LAB feature. The weight ( )wzn l

denotes the similarity between pixel z and its corresponding su-
perpixel ( )n l . The final cheetah shown in Fig. 1 is more uniformly
highlighted than the previous superpixel level, and the final co-
saliency detection results of other images from the same image set
are also listed in Fig. 1.
4. Experimental results

We test our co-saliency model on three benchmark databases,
i.e., the CP database [16] which contains 105 image pairs, the
MSRC database [50,51] which contains 14 object classes with



Fig. 9. Objective comparisons of the proposed model with nine state-of-the-art saliency detection models on CP database. (a) PR curve comparison; (b) F-measure curve
comparison; (c) MAE comparison; (d) weighed precision, recall and F-beta comparison.
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about 30 images per class, and the iCoseg database [52] which
contains 643 images from 38 object classes. For quantitative
comparison, we employ four evaluation metrics: (a) Precision–
Recall (PR) curve [29,30], (b) F-measure curve [21], (c) Mean ab-
solute error (MAE) [30], (d) Weighed F-measure( βF w) [53]. Given a
threshold T, the precision and recall rates of a certain saliency
detection model are defined as

∑( ) = | ( ) ∩ |
| ( )| ( )=
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N

SM T G
SM T
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17i
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i i
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where SMi(T) is a binary saliency map on threshold T, Gi denotes
ground truth, |·| is the binary mask's area and N is the number of
images in a database. The PR curve is obtained by plotting the
precision and recall rates when T varies from the range [0, 255].
Similarly F-measure is defined as
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where β2 is set as 0.3 [29,30] to emphasize the precision, and F-
measure curve is obtained by plotting F-measure(T) and T within
the range [0, 255]. Mean absolute error measures the difference
between the continuous saliency map S and ground truth G:
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where W and H denote the width and the height of the saliency or
ground truth map. The MAE in the whole database is the average
of MAE of each image.

Recently Margolin et al. [53] reveal that the interpolation flaw,
dependency flaw and equal-importance flaw exist in the traditional
PR curve and F-measure. Instead, they propose the weighed precision
Precisionw, weighed recall Recallw and weighed F-measure βF w to
better evaluate the performance of saliency map. Note that β = 12 is
set without bias between precision and recall. We also adopt this
metric in our experiment and for more details please see [53].

4.1. The role of each step of the proposed model

The foreground-induced maps are obtained by the inter-sal-
iency propagation step and the fusion strategy without the intra-
saliency propagation step considering the background cue. We
also generate the background-induced maps using only the in-
verse of the background cue in the intra-saliency propagation step.
The fusion maps are the results of our method including inter-
saliency propagation, intra-saliency propagation and co-saliency
integration step without multi-scale scheme. Finally, a multi-scale
strategy is utilized to produce final results.

Fig. 5(a) shows that combining background and foreground
cues has achieved a larger βF w than using background or



Fig. 10. Subjective comparisons of the proposed model with nine state-of-the-art saliency detection models on CP database. (a) Original images; (b) GS [31]; (c) SF [30];
(d) MR [32]; (e) SO [35]; (f) CG [16]; (g) CB [17]; (h) HS [18]; (i) RFPR [19]; (j) EMR [21]; (k) Ours; and (l) ground truth.
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foreground alone. The multi-scale refinement slightly improves βF w

compared to the fusion maps. Fig. 6(b) shows that the proposed
inter-saliency propagation step is able to accurately highlight the
stones although salient parts are not uniformly bright, showing
the weakness in dealing with color fluctuations among co-salient
objects. Fig. 6(c) shows that the background-induced map suc-
ceeds in excluding most background parts but some of them still
have high saliency values. Fig. 6(d) and (e) demonstrate that the
proposed model gives the best performance because we treat the
foreground and background cues separately. The intra-saliency
propagation with edge constraint and novel fusion strategy ef-
fectively combine the previous two cues and generate accurate co-
salient maps.

Finally, we compare the proposed fusion strategy with other
fusion strategies quantitatively in Fig. 5(b) and (c). Besides the
multiplying and averaging scheme, fusion results are also gener-
ated by low rank fusion framework [20], where the matrix jointing
the feature histograms of intra-saliency propagation results ap-
pears low rank and self-adaptive weights are used for



Fig. 11. Objective comparison of the proposed model with eight state-of-the-art saliency detection models on MSRC database. (a) PR curve comparison; (b) F-measure curve
comparison; (c) MAE comparison; (d) weighed precision, recall and F-beta comparison.
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combination. In Fig. 5(b), βF w of each method is
0.602,0.667,0.669,0.677 respectively, and our fusion method out-
performs three other fusion methods on this metric. What's more,
we count the number of the most accurate images among four
fusion methods. MAE of each image based on four fusion methods
is calculated and the most accurate image means the one with the
lowest MAE. As shown in Fig. 5(c), our fusion method achieves the
maximum number of accurate results.

4.2. Evaluation on the iCoseg database

We generate the co-saliency maps using the proposed model
on the iCoseg database, and all the 643 saliency maps are ob-
tained. The proposed model is compared, both subjectively and
objectively, with eight state-of-the-art saliency detection models
including four single image saliency models GS [31], SF [30], MR
[32], SO [35] and four co-saliency models CB [17], HS [18], RFPR
[19], and EMR [21]. The original EMR is tested on a subset of iCoseg
database from their paper. We use the EMR detection results of all
643 images in the iCoseg database in our experiment.

In Fig. 7(a), we compare the proposed model with other eight
models using the PR curve metric. The proposed model obtained a
higher accuracy than all the others models. Fig. 7(b) shows that
the F-measure of the proposed model is higher than any other
model. As shown in Fig. 7(c), the MAE value of the proposed model
reaches the minimum among all the models compared, which
indicates that the proposed model is the closest to ground truth.
Fig. 7(d) shows that the βF w of the proposed model is the best,
followed by a relatively high Precisionw and the highest Recallw.

We also compare the proposed model visually with other eight
models on some test images. The proposed model gives the best
performance showing brighter foreground and darker background
than others. For the model GS, each superpixel's saliency value is
based on its geodesic distance to the image boundary. As a result,
GS may be sensitive to object texture and background clutter, as
shown in the 2nd and 7th examples of row b. The color contrast
and distribution used in SF only highlight some part of the co-
saliency object visually in Fig. 8. The two graph-based method MR
and SO suppress background effectively because of the boundary
prior but are still weak in highlighting the whole foreground ob-
ject. So the four single image saliency models do not perform well
on the database because they do not utilize the intrinsic re-
lationship of the images. The co-saliency model CB generates the
final co-saliency map by multiplying the contrast, spatial and
correspondence cues. It achieves the high accuracy at the cost of
incomplete salient object rendering and relatively low saliency
values. The HS and REPR models use object priors but some
background areas are still highlighted especially when the back-
ground is complex (see row g and h in Fig. 8). As shown in row i of
Fig. 8, the EMR results lose some parts of the red car and the
pandas are not highlighted uniformly because color fluctuates
within these foreground objects. Among all these models, our co-



Fig. 12. Subjective comparisons of the proposed model with eight state-of-the-art saliency detection models on MSRC database. (a) Original images; (b) GS [31]; (c) SF [30];
(d) MR [32]; (e) SO [35]; (f) CB [17]; (g) HS [18]; (h)RFPR [19]; (i) EMR [21]; (j) Ours; and (k) Ground truth.

Fig. 13. PR curves of the existing saliency models and their integration with the proposed co-saliency model on three databases. (a) On iCoseg database; (b) On CP database;
(c) On MSRC database.

Fig. 14. The block diagram of the modified model in order to deal with noisy images.
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Fig. 15. Examples on the image group containing noisy images.

Table 1
Average running time per image (seconds).

Models CG [16] CB [17] HS [18] RFPR [19] EMR [21] Ours

CP 472.40 1.74 15.73 16.48 0.63 1.28
iCoseg N/A 4.18 103.38 109.30 4.92 4.21
MSRC N/A 3.02 94.21 86.37 4.81 3.49
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saliency detection results are the closest to ground truth.
4.3. Evaluation on CP database

The CP database [16] contains 105 image pairs and 210 images
in total. Besides the above eight models GS [31], SF [30], MR [32],
SO [35], CB [17], HS [18], RFPR [19], EMR [21], another co-saliency
model CG [16] designed for image pairs is joined in comparison. In
Fig. 9(a), our PR curve is a little faded against RFPR but is still
comparable to HS and EMR. From Fig. 9(b), we conclude that our F-
measure is more stable than others. Fig. 9(c) and (d) reveal that the
proposed model achieves the least MAE and the highest βF w. In
summary, the proposed co-saliency model does not perform the
best on the PR curve metric because the model is derived from
pairwise saliency propagation but the number of images for pro-
pagation in the CP database is limited. On the other three metrics,
the proposed model surpasses all the others. It is observed in
Fig. 10 that the proposed model performs better visually on the
five example image pairs.
4.4. Evaluation on the MSRC database

The MSRC database is a bit challenging, where the common
objects have different colors. The proposed model is compared
both subjectively and objectively with the above eight models GS
[31], SF [30], MR [32], SO [35], CB [17], HS [18], RFPR [19], EMR
[21]. Although the proposed method mainly uses the color simi-
larity to measure the common objects in different images, the
intra-saliency propagation step further enhances the salient object
of each image, and that is why the proposed model outperforms
the color-based co-saliency models [17–19,21]. Fig. 11 shows that
the proposed model surpasses all the other models on all the four
evaluation metrics. Besides, the proposed method gets the closest
results to ground truth as shown in the two sets of example
images in Fig. 12.
4.5. Integration with state-of-the-art single image saliency models

The proposed method uses a single image saliency model MR
[32] to produce the initial saliency values, and the resulting co-
saliency model is named as CO–MR. We also embed other models
like SO [35], SF [30], GS [31] and Itti [36] into the proposed co-
saliency model named as CO–SO, CO–SF, CO–GS and CO–Itti. As
shown in Fig. 13, all these co-saliency models outperform their
initial saliency models on both databases. We observe that CO–MR,
CO–SO, CO–SF and CO–GS all achieve comparable performance to
the state-of-the-art co-saliency models such as HS, RFPR and EMR.
We even embed Itti [36], which is the oldest saliency model
generating less satisfying detection results, into the proposed co-
saliency model and CO–Itti achieves the state-of-the-art perfor-
mance. The proposed model is not too sensitive to the initial sal-
iency model. The reason behind this is that our inter-saliency
propagation strategy propagates the initial saliency value from the
guiding image to the guided one. As long as part of the salient
object is highlighted by the initial saliency model, the inter-sal-
iency propagation map will recover the whole object based on
color similarity. Furthermore, our intra-saliency propagation step
takes advantage of characters of each individual image such as
boundary connectivity and edge constraint, making the proposed
model robust to background clutter.

4.6. Analysis on the image group containing noisy images

It is important for a co-saliency model to detect the common
salient objects not only in the standard database but also in the
image group containing noisy images, since such occasion is more
common in practical applications. Noisy images mean those which
are irrelevant with most images in the whole image group, and
they are highlighted with red boxes in Fig. 15.

The proposed model can detect the common salient objects
from such kind of image group with a small modification as shown
in Fig. 14. After the inter-saliency propagation step, inter-saliency
propagation maps which are relevant to noisy images are called
noisy intermediates and they will not have any object highlighted,
because the objects in noisy images are quite different from the
ones in other ordinary images. Thereafter, we compute the global
contrast value which denotes the gap between the maximum and
minimum values of an inter-saliency propagation map. A simple
threshold, which is set to 0.5n (max–min) in practice (max and
min denote the maximum and minimum values of all the inter-
saliency propagation maps), can be used to filter out the noisy
intermediates. Such images will not go through the intra-saliency
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propagation step unlike the other images, as the intra-saliency
propagation step will always increase the contrast between the
saliency object and the background region. Finally co-saliency in-
tegration is used to obtain the co-saliency detection result. It is
observed in Fig. 15 that the common salient objects are all popped
out while the irrelevant objects are suppressed in the noisy
images.

4.7. Computation cost

Table 1 reports the average running time of all the co-saliency
models used for comparison. Experiments are implemented on a
PC with Intel i3-4130 3.4 GHz CPU and 4GB RAM. From Table 1 the
proposed model is comparable to the most efficient model on both
databases, because we convert the co-saliency detection into the
pairwise propagation problem, which reduces the computation
cost compared to fine segmentation [18,19]. The most time-con-
suming step is the edge detection [47] and multi-scale superpixel
segmentation [43], taking about 2 s and 1.8 s respectively for a
typical 300n400 image. Note that the average image size in CP
database is about 128n128, so the time cost of above two steps is
much lower.
5. Conclusion

This paper presents a novel and efficient method for co-sal-
iency detection. Unlike the existing co-saliency models, the pro-
posed method first considers co-saliency detection as a two-stage
saliency propagation problem which uses a single image saliency
model to propagate pairwise saliency values. Co-salient fore-
ground cue based on pairwise similarity comparison is obtained in
the inter-saliency propagation step. Saliency mask is used to im-
prove the background cue, and it is then integrated with co-salient
foreground cue by a graph based regularization with a new edge
constraint. Finally the obtained intra-saliency propagation maps
are combined using a novel fusion strategy. Multi-scale superpixel
segmentation is then used to obtain high quality saliency maps.
Both qualitative and quantitative evaluations have shown that the
proposed method has outperformed the state-of-the-art models.
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