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Deformed Graph Laplacian for
Semisupervised Learning

Chen Gong, Tongliang Liu, Dacheng Tao, Fellow, IEEE, Keren Fu, Enmei Tu, and Jie Yang

Abstract— Graph Laplacian has been widely exploited in tra-
ditional graph-based semisupervised learning (SSL) algorithms
to regulate the labels of examples that vary smoothly on the
graph. Although it achieves a promising performance in both
transductive and inductive learning, it is not effective for handling
ambiguous examples (shown in Fig. 1). This paper introduces
deformed graph Laplacian (DGL) and presents label prediction
via DGL (LPDGL) for SSL. The local smoothness term used
in LPDGL, which regularizes examples and their neighbors
locally, is able to improve classification accuracy by properly
dealing with ambiguous examples. Theoretical studies reveal
that LPDGL obtains the globally optimal decision function,
and the free parameters are easy to tune. The generalization
bound is derived based on the robustness analysis. Experiments
on a variety of real-world data sets demonstrate that LPDGL
achieves top-level performance on both transductive and induc-
tive settings by comparing it with popular SSL algorithms,
such as harmonic functions, AnchorGraph regularization, linear
neighborhood propagation, Laplacian regularized least square,
and Laplacian support vector machine.

Index  Terms—Deformed graph  Laplacian (DGL),
generalization bound, local smoothness regularizer, parametric
sensitivity, semisupervised learning (SSL).

I. INTRODUCTION

N MANY real-world applications, the quantity of labeled

examples is somewhat limited because of high monetary
cost or unacceptable labeling time. For example, an inter-
active image segmentation requires the user to annotate a
small number of seed points, because marking all foreground
and background pixels manually is intractable. Besides,
it often takes months of laboratory work for researchers
to identify a single protein’s 3-D structure, for instance.
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However, massive unlabeled examples are often readily avail-
able in the above applications. Therefore, semisupervised
learning (SSL) was developed to deal with situations in which
the labeled examples are scarce but the unlabeled examples
are more than adequate. SSL has been intensively investigated
in recent decades because of its solid theoretical base and
enormous practical value [1]- [4].

A. Semisupervised Learning

We use the notations X and ) to denote the example
space and label space, respectively. Given a set of examples
Y={(x;, e XCRLi=1,2,....n,n =14 u with | < u},
in which the first [ elements are examples with the labels
{yi}f:1 € Y € {1,—1}, and the rest are u unlabeled exam-
ples. We use £ = {(x1, y1), (X2, ¥2), ..., (X7, y1)} to denote
the labeled set drawn from the joint distribution P defined
on X x Y, and U = {X;41,Xi4+2,...,X/4y} to represent
the unlabeled set drawn from the unknown marginal distri-
bution Py of P.

SSL can be either transductive or inductive [5]. A trans-
ductive algorithm aims to find the labels yiy1, yi+2, ..., Yitu
of every unlabeled examples X1, X;42, ..., X;4, in U based
on ¥. In contrast, an inductive algorithm takes ¥ as the
training set to train a suitable f : X — ), which is able
to predict the label f(x;) € Y € R of an unseen test
example x, € X € R%

The main difference between SSL and traditional supervised
learning is that SSL utilizes massive unlabeled examples to
enhance classification performance. However, it is worth point-
ing out that the large quantity of unlabeled examples should
be exploited under the correct assumption; otherwise, they will
probably damage performance significantly. Two assumptions
are commonly adopted for SSL, i.e., cluster assumption and
manifold assumption. In cluster assumption, the probability
distribution P is such that points in the same cluster are likely
to have the same label [6]. It supposes that the classes in the
example space are well separated, and the decision boundary
will fall into a low-density region. Manifold assumption is also
called smoothness assumption, which means that if x,x, € X
are close in the intrinsic geometry of the marginal distribu-
tion Py, then their labels y; and y, are similar. In other words,
the data distribution is supposed to follow a manifold structure,
along which the labels of examples should vary smoothly.
It has been widely observed that a smoother solution usually
leads to higher classification accuracy under the manifold
assumption [5], [6].

Most algorithms based on the cluster assumption are usu-
ally variants of traditional support vector machines (SVMs).
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Unlike supervised SVM, it is difficult to judge whether an
unlabeled example in a semisupervised case is on the right
or wrong side of the decision boundary, so hat loss is devel-
oped to replace the hinge loss commonly adopted by SVM.
Semisupervised SVMs (S3VM) [7] and structural regularized
SVM [8] are representatives of this learning assumption. A
manifold assumption-based algorithm often establishes a graph
to describe the manifold structure and uses the graph Laplacian
to approximate the Laplace-Beltrami operator defined on
the manifold. A smoothness term, which requires the two
examples connected by a strong edge to obtain similar labels,
is designed by adopting this graph Laplacian. Harmonic func-
tions (HF) [1], linear neighborhood propagation (LNP) [2],
Laplacian SVMs (LapSVM), and Laplacian regularized least
squares (LapRLS) [9] belong to this assumption. According to
the best of our knowledge, currently no theoretical approach
that enables a decision about when to use cluster assumption-
based methods or manifold assumption-based methods. The
choice of SSL algorithms should fit the practical data
distribution.

B. Motivation and Contribution

This paper aims to develop a graph-based SSL algorithm
under the manifold assumption, which assumes that there
exists a C* smooth manifold M without boundary and with
an infinitely differentiable embedding in the ambient example
space X. We aim to use the limited number of labeled
examples {x,-}ﬁz1 € R? and the abundant unlabeled examples
{x,-}ﬁ“:l‘ 41 € RY to approximate the embedded manifold.
This discovered manifold carries critical information for the
distribution of the data set, which can be utilized to accurately
classify the unlabeled examples.

As mentioned above, graph-based methods usually intro-
duce a smoothness term to penalize the variation of labels
along the manifold. To design such a smoothness term, existing
methods usually adopt a standard graph Laplacian to constrain
the labels of every pair of examples according to their
similarities. The smoothness term defined by the standard
graph Laplacian in this case is called a pairwise smoothness
term. Unlike these traditional methods, we use the deformed
graph Laplacian (DGL) [10] to define a novel smoothness
term, and propose an algorithm called LPDGL. Compared with
other popular SSL methods, LPDGL has the following three

advantages because of the DGL.
1) A novel local smoothness term is introduced naturally,

which is critical for our SSL model to better deal with
ambiguous examples.

2) LPDGL is able to achieve higher classification accuracy
than some state-of-the-art methods for both transductive
and inductive settings.

3) LPDGL can be regarded as a unified framework of many

popular SSL algorithms.
The local smoothness term mentioned in 1) considers

the label smoothness of examples with their neighbors as
a whole, and heavily regularizes the example that corresponds
to a low degree. This is because an example that has
weak edges with its neighbors often confuses the classifier
significantly. Such examples can be outliers, or points that
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Fig. 1. Local smoothness constraint on DoubleLine data set. (a) k-NN graph
with & = 2 is built and the edges are shown as green lines. (b) Result without
incorporating the local smoothness. (c) Result produced by the proposed
LPDGL. Labels of bridge point under two different simulations are highlighted
in (b) and (c), respectively.
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are located very close to the decision boundary. These
ambiguous examples cannot be reliably classified because
there is very little information provided by other examples.
Similar idea can be found in [11], which uses the informative
examples in dense regions to conduct active learning. The
incorrect classification of ambiguous examples is likely to
bring about disastrous results. Taking the DoubleLine data
set, for example (Fig. 1), the red, blue, and black circles
in Fig. 1(a) represent positive examples, negative examples,
and unlabeled examples, respectively. The examples with
y-coordinate 3 form the negative class and the points with
y-coordinate O correspond to the positive class. The point at
(6, 1.5) lies exactly in the middle of the two classes (d] = d»),
and can be attributed to an arbitrary class. We call this point
as bridge point because it will probably serve as a bridge
for the mutual transmission of positive and negative labels.
In Fig. 1(b), which does not incorporate the local smoothness
term, the positive label is mistakenly propagated to the
negative class through the bridge point. This is because the
labeled positive example [the red circle in Fig. 1(a)] is closer
to the bridge point than the labeled negative example (blue
circle), so it imposes more effects on the bridge point. As a
consequence, the label of the bridge point is 0.1737 [Fig. 1(b)],
which strongly influences the point at (6, 3), and leads to
the incorrect classification of more than half of the negative
examples. By comparison, Fig. 1(c) shows that the proposed
LPDGL equipped with the local smoothness constraint
successfully prohibits the label information from passing
through it, and achieves a reasonable result. We observe that
the label of bridge point is suppressed to a very small number
(0.0352), significantly weakening the strength of the positive
label propagating to the negative points.

LPDGL is formulated as a regularization framework,
through which the globally optimal solution is obtained.
LPDGL deals with the transductive situations in Euclidean
space, and handles the inductive tasks in reproducing kernel
Hilbert space (RKHS). Theoretical analyses show that LPDGL
is very robust to the choice of training examples, and the prob-
ability of the generalization risk being larger than any positive
constant is bounded. Therefore, LPDGL performs accurately
and reliably. Moreover, the parametric sensitivity is investi-
gated based on the stability theory of solution of equations,
from which we find that the classification performance is
very robust to a wide choice of parameters. Therefore, the
parameters in LPDGL are easy to tune.

LPDGL is demonstrated to be effective in many tough
real-world applications, such as handwritten digit recognition,
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unconstrained face recognition, and detection of violent
behaviors. Therefore, the proposed algorithm has high
practical value.

II. TRANSDUCTION IN EUCLIDEAN SPACE

Given a graph G = (V, &) where V is the vertex set
composed of the elements in W, and £ is the edge set
recording the relationship among all the vertices. W, x, is
the adjacency matrix of graph G, in which the element w;;
encodes the similarity between vertices i and j. The degree
of the ith vertex is defined by d;; = Z?:1 w;j, and D is a
diagonal matrix with (D);; = d;; for 1 <i < n. Therefore, the
volume of graph G can be further formulated as v = 37, dj;.

The existing SSL algorithms [1], [9], [12] usually adopt
the traditional graph Laplacian L. = D — W, to model
the smoothness relationship between examples. In particular,
if we use the vector f = (f1, fz,...,f,,)T to record the
determined soft labels of all the examples {x;}7_, in ¥, then
the smoothness term is formulated as

L) WU (73 ()

i=1 j=1

However, the pairwise smoothness (1) cannot effectively
handle the ambiguous bridge point, as shown in Fig. 1, so we
proposes a novel smoothness regularizer defined as

Q) = ptTLE + T X - D/o)f )

in which f and y are nonnegative parameters balancing
the weights of the above two terms. The first term f7 Lf is the
traditional pairwise smoothness defined by (1). It evaluates the
smoothness between pairs of X; and x; over the entire data set.
The second term is the local smoothness term mentioned in
Section I-B, which can be reformulated as

f7A—D/o)f =D (1 —dii/v) . (3)

i=1

On a k-NN graph G, d;; records the connective strength
among X; and its neighbors, so minimizing (3) enforces the
example with large d;; to obtain a confident soft label f;,
whereas the example with low degree d;; to receive a relatively
weak label.

Actually, a DGL formulated as L = I — xW — x2(I — D)
has been shown in [10], where x is a free parameter and
I is an n x n identity matrix. This DGL is an instance
of a more general theory of deformed differential operators
developed in mathematical physics [13]. The deformation
technique was initially proposed for the dilation group, and
was applied to many situations afterward, such as Schrodinger
operation theory, quantum field theory, and plasma stability
theory. Note that the deformed Laplacian L will degenerate
to the standard graph Laplacian L if x is set to 1. Next,
we will shed light upon that the proposed smoothness term
(2) is related to L. By denoting L = AL + y (I — D/v),
(2) can be expressed as Q(f) = f’Lf and L here plays an
equivalent role as L in (1). Considering that L = D — W,
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we have
L=yI-pW+(f—y/0)D
_ _ __ b _ Po—y
=+ y/v)[l yv+ﬁv_yW yu+/30—y(I D)}
“4)

which equals to L when y/f =0v({ —2)/v — 1, and followed
by the division by the coefficient y + f — y /v.

Based on the novel smoothness term, we derive the trans-
ductive model of LPDGL in the Euclidean space. Suppose
y = (31, y2,...yn)! is a vector indicating the initial states
of all examples, in which y; = 1,—1,0 when x; is a
positive example, negative example, and unlabeled example,
respectively. Moreover, we define a diagonal matrix J, x, with
the ith (1 <i < n) diagonal element 1 if x; is labeled and 0
otherwise, then the regularization framework of transductive
LPDGL is

min () = L[ATLE + 57 (L Do) + 3G - Y)IB]. )

The first term in the bracket of (5) is the pairwise smoothness
term, which indicates that if two examples x1, X, € X’ distribute
nearby in the example space X, then their labels y; and y»
should be also very similar in the label space ). Compared to
the first term that simply evaluates the smoothness between
two examples simultaneously, the second local smoothness
term, which has been introduced above, considers the smooth-
ness of examples and their k neighbors in a local region.
As already revealed by Fig. 1(c), this manipulation makes
the bridge point obtain a less reliable soft label, which effec-
tively prevents the mutual transmission of labels belonging
to different classes. The third term is a fidelity function,
which guarantees that the labels of initially labeled examples
{Xl-}f:1 remain consistent with its initial conditions {yi}f:1
after transduction. To find the minimizer of (5), we set the
derivative of Q(f) with respect to f to 0, and obtain

PLE+y (X —-D/o)f +Jf —Jy = 0. (6)
Therefore, the optimal f is expressed as
f=[J+pL+yd—D/v) ly. (7

Based on (7), the label of x; € U/ is further determined as 1
if f; > 0, and —1 otherwise.

Next, we investigate the parametric sensitivity of the pro-
posed LPDGL. Parametric sensitivity evaluates the impact of
a parameter on the final output of the model. If the output
remains substantially unchanged with the wide range of a
parameter, we say that the output is insensitive to the choice
of this parameter.

In the proposed LPDGL, § and y are two critical parameters
to be tuned. This section aims to verify that the classification
results of LPDGL are insensitive to the variation of either of
them. The theoretical results provided here will be empirically
demonstrated in Section V-C. Let B=J 4+ fL+ y (I —D/v),
then the impacts of § and y on f are studied by investigating
the equations Bf = y about how f is affected when the
coefficient matrix B is slightly disturbed. Before discussing
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the parametric sensitivity of f and y, we first provide a useful
lemma.

Lemma 1 [14]: Given a set of linear equations Bf =y,
where B € C"*" is the coefficient matrix and f is the solution.
Suppose y at the right-hand side of equations is accurate and
B is slightly disturbed by 0B, then the deviation Jf from the
accurate f satisfies

1oFll _ _ Cond®B)([IoBII/IIBI) ®)
Il — 1 — Cond(B)(|[B]/|IBIl)
where ||| denotes the Euclidean norm and

Cond(B) = ||B|||IB™!| is the associated condition number.

A. Sensitivity of y

Suppose a small deviation dy is added to the parameter y,
then 6B in (8) is 6B = Jy (I — D/v), which leads to
the departure of from the accurate solution f. Therefore,
we have (9), as shown at the top of this page, where

=23 [Bdii+y(1 —dii/v)] +1 > 0. Note that the
numerator in (9) is the same as the last term of denominator
except the coefficient, and it is a small number compared with
the denominator if y is slightly disturbed, so ||6B||/||B] in (9)
is very close to 0. Moreover, it is clear that B is a positive
definite matrix, which is invertible, so Cond(B) will not be
overly large. Therefore, the value of the right-hand side of (8)
is small, which suggests that the performance of LPDGL is
not sensitive to the choice of y.

B. Sensitivity of p

Suppose a small bias Jf is added to S, then JB in (8) is
0B = JpL. Therefore, we compute the value of ||0B|/|B]l,
and obtain (10), as shown at the top of this page.

Similar to (9), the numerator in (10) is very small compared
with the denominator, so |[0B]|/||B| is very close to O.

As a result, according to (8), we know that ||of || is negligible in
the presence of ||f||, which indicates that the result of LPDGL
is also very robust to the variation of £.

ITI. INDUCTION IN RKHS

Note that f = (f1, f2,..., f,,)T in (7) only encodes the
soft labels of examples that are used to construct the graph G
during the training phase, so it cannot predict the labels of
test examples that are unseen in the training phase. Therefore,
this section adapts the proposed LPDGL to inductive settings,
which requires the decision function f trained on ¥ to
perfectly handle the out-of-sample data, and the predicted
label, for example, x is f(x) € R.

In this paper, we build the LPDGL model for prediction
in the RKHS. An RKHS Hg is a Hilbert space H of
functions on a set X' with the property that for all x € X
and f € H, the point evaluations f — f(x) are continuous
linear functionals [15]. The Moore—Aronszajn theorem [16]
indicates that for every RKHS, there exists a unique positive
definite kernel on X x X. Therefore, by adopting the
Riesz representation theorem, the unique reproducing kernel
can always be constructed as K(-,-) X x X — R,
which has an important property that Vxi,x; € &,
K(x1,x2) = (K (-, x1), K(-, x2))7¢, from the point evaluation
functional.

Remark 1: The linear counterpart of LPDGL in RKHS can

be derived using the linear prediction function f(x) = w’x,
and then substitute f = X7w into (5), where o is the
weight vector to be optimized and X = (x1,X2,...,X,) is

the data matrix with each column representing an example.
The supplementary material shows that LPDGL in RKHS
includes the linear LPDGL as a special case, and in par-
ticular, LPDGL in RKHS degenerates to the linear LPDGL

when the linear kernel K(x;,x;) = xl.ij is adopted.
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Empirically, when data from different classes are linearly non-
separable, LPDGL in RKHS with a nonlinear kernel is superior
to its linear counterpart; otherwise, linear LPDGL should be

applied.
Suppose K (-, -) is a Mercer kernel associated with RKHS,
and the corresponding norm is | - |4, then we have the

following regularization framework of LPDGL defined
in RKHS:

1
—|a
2

l
+ D (fx) - y»z]
i=1

In (11), the tradeoff among the four terms is captured by
three nonnegative parameters a, f, and y. Compared with (5)
for transduction, (11) contains one more induction term
Il f ||%_[ that controls the complexity of f. This term enhances
the generalizability of LPDGL by effectively preventing the
overfitting problem.

The extended representer theorem [9] states that the mini-
mizer of (11) can be decomposed as an expansion of kernel
functions over both labeled and unlabeled examples

min o(f) = I£1I3, + BETLE + y£7 (1 — D/o)f

(1)

n
f®) = siK(Xx,x). (12)
i=1
Therefore, by plugging (12) into (11), we obtain a novel
objective function with respect to S = (s1, ..., s,)7

~ 1
Sm]iRp 0(S) = 5[asTKs + BSTKLKS + y STK(I — D/v)KS
€ n

+ lly — JKS|?] (13)

where K is an n x n Gram matrix over all the training
examples, with elements K;; = K(x;,x;) for I <i,j < n.
It can be easily proved that the objective function in (13) is
convex, so we can find the globally optimal S by calculating
the derivative of Q(S) to S, and then setting the result to 0,
which is expressed as

S =[al + BLK +y I — D/0)K + JK]ly. (14)

Finally, we substitute (14) into (12), and obtain the function f
for predicting the label of x.

A. Robustness Analysis

Robustness is a desirable property for a learning algorithm,
because it reflects the sensitivity of the algorithm to the
disturbances of training data. Xu and Mannor [17] state
that an algorithm is robust if its solution achieves similar
performances on a test set and a training set that are close.
Based on the notion introduced by [17], this section studies the
robustness of LPDGL. The whole sample space is represented
by Z = X x ), where X is the input example space and ) is
the output label space. Furthermore, we use z; = (X;, yi) € 2
to denote the example-label pair, where x; € X and
yvi € Y = {—1, 1}. Therefore, the task of LPDGL is to learn
a function f : X — ) that maps the elements in the input
space X’ to the output space ).
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Definition 1 (Covering Number [17]): For a metric
space S, with a metric p, where T, T C S, are two sets
in §,, we say that T is an e-cover of T,ifVvi e T, 3 € f‘,
such that p(t,7) < e. The e-covering number of T is

N, T,p) = min{|f"| . T is an & — cover of T}. (15)

Definition 2 (Robustness [17]): Let ¥, L(-) denote the
training set and loss function of an algorithm A, respec-
tively, then A is (0, &(¥))-robust if Z can be parti-
tioned into @ disjoint sets, denoted as {Cl-}‘?zl, such
that Vxi,xp € ¥

721,22 € Ci = |L(Ay,z1) — L(Ay, 22)| < e(¥). (16)

Based on Definitions 1 and 2, we have the following
theorem.

Theorem 3: Let X denote the input space, and Vx;,
xj € X, |Ix; —xj|| <¢&. A k-NN graph is built with the edge
weights represented by Radial Basis Function (RBF) kernel
wij = exp(—|Ix; — X;[*/(26%)). Under N(g/2, X, || - ||,) <00,
the proposed LPDGL is (8//a)'/?(1 + (/a)/>)(1 —
exp((—&2)/(262)))/?-robust.

Proof: Suppose S in (13) is set to So = (0,...,0)T,
then we have Q(So) = |lyll?/2 = 1/2. Moreover, note that
all the terms in the bracket in (13) are nonnegative, so we
obtain 1/2 & STKS < Q(S) < Q(So) = [/2, which reveals
that

STKS < /a. (17)

For binary classification, we can partition Z into
0 = 2N(e/2, X, | - |,) disjoint sets with a margin ¢ [17].
Therefore, according to Definition 1, we know that if z; and z»
belong to the same set C; (1 < i < 0), then ||x] — X2 < ¢
and ||ly; — y2]l = 0 [17]. We also know that the loss function
of LPDGL is

L(f) = (f(x) — y)*

so according to Definition 2 the difference between the losses
of f on z1 and 73 is

IL(f,z1) — L(f, 22)| = |31 — Fx0))? = (02 — f(x2))?]-

(18)

(19)
By plugging (12) into (19), we obtain
IL(f,z1) — L(f, z2)]
n 2 n 2
= [yl - ZSiK(Xl,Xi):| —[yz - ZSiK(Xz,Xi)]
i=1 i=1
n
< vy — D si (K(xi,x) + K(XZ,Xi))‘
i=1
n
yi—y2— > si (Kx1,x) — K(x2, Xi))’
i=1
= |B1l|B2| (20)
in which By = yi + y» — >0 si(K(x1, %) + K (X2, X;))

and By = y1 — y2 — >y si(K(x1,X;) — K(x2,%;)). In the
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following derivations, we aim to find the upper bounds of
|B1| and |B»|, respectively. It is easy to show that

[Bil < [yil+ [y2l + | f(x1) + f(x2)]
= 2+2 max <f’K(X9 ))H
e{xy,x2}

xef

<2+2 max |[fllyvVK(x, ")
xe{xy,xz}

n
< 2+2 max ZS,-K(X,-,-) VK(X,-)
xe{x,xa} |4
i=1 H
n n
<242 <ZSiK(Xi,-),ZSjK(Xj")>
i=1 i=1 H
n
=242 z sisjK(xi, )K (X, )
i,j=1
n
=2+2 z si K (X, X))s;
ij=1

21

/1
=2+4+2VSTKS <2 +2,/—
a

in which the notation (-, -)4; denotes the inner product
defined in H. Note that in the derivation of (21),
we employed the reproducing property of RKHS f(x) =
(f, K(x,-))¢ in the second line, the Cauchy-Schwarz
inequality (f, K(x, )y < || fll (K (x, ))Y/2 in the third line,
and the results of (17) in the last line.

Moreover, since ||f||%_[ = STKS < (l/a), we have
I fllg < (I/a)/2. By further considering that ||y; — y2|| = 0
and ||x;] — x2| < ¢, we immediately obtain

|Ba2| = |f(x1) — f(x2)]
= [(f, K(x1,-) — K (x2, )]
< IfInlK i, ) — K (X2, )l
= | £l K (x1,%1) + K (x2,%2) — 2K (x1, X2)
< VIja/K(x1,%1) + K (%2, %) — 2K (X1, X2)

< VIjay2 = 2expl—xi — x>/ 202)]
= ‘/l/a\/2 — 2exp[—e2/(26?)].
Finally, we substitute (21) and (22) into (20), and have

2
|L(f,m)—L(f,zz)|s,/8—’(1 +,/i)\/1 —exp (——g 2)
a a 20

(23)

(22)

which indicates that LPDGL is (0, (81/a)'?(1 + (I/a)'/?)
(1 — exp(—&%/20%)'/?)-robust. [ ]

B. Generalization Risk

Based on the robustness analysis in Section III-A, we derive
the generalization bound for LPDGL. The empirical error
Lemp(Ay) is the error of algorithm A on the training set ‘P
The generalization error L(-) is the expectation of error
rate produced by f on the whole sample space Z. Suppose
all the examples are i.i.d, and are generated from an unknown
distribution P, then the above two errors are defined by
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L(Ay) = Ex~p[L(Awy,x)] and Lemp(-A‘P) = 1/n inel}‘
L(Ay, x;), respectively.

Theorem 4 (Generalization Bound [17]): If the training
set ¥ consists of n i.i.d. samples, and the algorithm A is
(@, e(¥))-robust, then for any 6 > 0, with probability at
least 1 — &

20102 + 21n(1/9)
n

|Z/(~A‘P) — Lemp(Ay)| < e(¥) + M\/
(24)

where M is the upper bound of loss function L(-, -).
According to Theorem 4, the generalization bound of
inductive LPDGL is provided in Theorem 5.
Theorem 5: Let L(f,¥) = (f(x) — y)? be the loss func-
tion of LPDGL, than for any § > 0, with probability at
least 1 — J, the generalization error of LPDGL is

7 8l / _g2
|L(Al//) - Lemp(Au/)| < \/;(1 +\/;) 1 —exp (ggz)

+2(1+£)\/291n2+2ln(1/5).

a n

(25)

Proof: To obtain the generalization bound of LPDGL,

we need to compute ¢(V), 8, and M that appear in (24). Note

that e (V') and 6 have been already worked out in Section III-A,

so our target is to find the upper bound M of the loss
function L(f, ¥). Therefore, we compute

L(f,y) = (y— fx))* = y> =29 (x) + f2(x)
< 2y24+2f%(x) <2+42l/a.

(26)
As a result, the upper bound of the adopted loss function is

M =2+2l/a. 27)

Finally, by putting (23) and (27) into (24), we complete the
proof. [ ]

Theorem 5 reveals that the our LPDGL has a profound
generalizability with convergence rate of order O(1/n)'/2,
which means that the more training examples are available, the
lower generalization bound of LPDGL we have, so LPDGL
can predict the label of a test example reliably.

IV. RELATED WORK

SSL has attracted considerable interest since it was
developed. Various SSL algorithms have been proposed for
different purposes and applications. As mentioned in Section I,
existing SSL algorithms can be divided into a transductive
approach or inductive approach.

Typical  transductive  methods include  Tikhonov
regularization [18], HF [1], local and global
consistency (LGC) [12], minimum cut (MinCut) [19], local
learning regularization (LLReg) [20], local and global
regularization (LGReg) [21], path-based SSL (PBSSL) [22],
transductive SVMs (S3VM) [7], safe SSL (S4VM) [23],
AnchorGraph regularization (AGR) [24], graph transduction
via alternating minimization (GTAM) [25], Laplacian
embedded support vector regression [26], semisupervised
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Fig. 2. Evolutionary process from LPDGL to other typical SSL methods.

Dashed line: infinitely approach to. Note that our LPDGL is located in the
central position and other algorithms are derived from LPDGL by satisfying
the conditions alongside the arrows.

classification based on class membership (SSCCM) [27], and
safety-aware SSCCM (SA-SSCCM) [4]. Of these, S3VM,
S4VM, SSCCM, and SA-SSCCM are based on the (modified)
cluster assumption and the others are developed under the
manifold assumption.

Representative inductive SSL algorithms include harmonic
mixtures [28], LapSVMs [9], LapRLSs [9], LNP [2], simple
SSL [29], and vector-valued manifold regularization [30]. For
more detailed explanations about SSL algorithms, the reader
is referred to [5] and [6].

All the above methods are formulated as a regularization
framework, the same as the proposed LPDGL. The main
difference between them is how to design the regularizer.
In this sense, most of the above SSL algorithms can be derived
from LPDGL by choosing different regularizers or incorpo-
rating other constraints, as shown in Fig. 2. For example,
if the local smoothness term of LPDGL is removed (i.e., y is
set to 0) and let § — 0, the result of LPDGL will get
arbitrarily close to HE.! If we further require the obtained
discrete labels belong to {£1}, we reach the MinCut algorithm.
In addition, LGC can be derived from LPDGL by adopting the
normalized graph Laplacian. LGReg, GTAM, and Tikhonov
regularization can also be easily derived by employing the
techniques alongside the arrows. Some inductive algorithms,
including LNP, LapRLS, and LapSVM, are also related to
inductive LPDGL. If we set y = 0 and adopt the hinge
loss instead of the squared loss incorporated by LPDGL,
we immediately obtain LapSVM. Similarly, if y =0 and a
linear neighborhood graph in [2] is constructed, the proposed
LPDGL will have the same formation as LNP. Of particular
note is that the only difference between LapRLS and inductive
LPDGL lies in the local smoothness term, of which the
significance for boosting the accuracy will be demonstrated
in Section V. Therefore, the proposed LPDGL has a strong

IThe precise solution of HF can be obtained by further relaxing
the HF model derived from LPDGL as ming f7Lf, st fi =
fori =1,2,...,1. The detailed relaxation process is referred to [5].
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Fig. 3.  Transduction on two 3-D data sets. (a) and (d) Initial states of
Cylinder&Ring and Knot, respectively, in which the red triangle denotes
a positive example and the blue circle represents a negative example.
(b) and (e) Transduction results of developed LPDGL on these two data sets.
(¢) and (f) Results of LPDGL (linear).

relationship with other popular SSL methodologies, and they
can be viewed as special cases of LPDGL.

V. EXPERIMENTS

In this section, we validate the proposed LPDGL on several
synthetic toy data sets, and compare LPDGL with some
state-of-the-art SSL algorithms on a number of real-world
collections. HF [1], LGC [12], AGR [24], LNP [2],
LapRLS [9], LapSVM [9], LLReg [20], PBSSL [22],
S4VM (RBF kernel) [23], and S4VM (linear kernel) [23]
were adopted as baselines to evaluate the transductive ability
of LPDGL. LNP [2], LapRLS [9], and LapSVM [9] were
used for the inductive performance comparison because other
algorithms do not have inductive ability. For fair comparison,
HF, LGC, LLReg, PBSSL, LapRLS, LapSVM, and LPDGL
were trained by the same k-NN graph? for each of the data
sets appearing in this paper, and all the algorithms were
conducted 10 times independently under each [ (I represents
the size of the labeled set) with randomly selected labeled
set £. However, at least one labeled example was selected
in each class when £ was generated. The reported accuracies
and standard deviations of algorithms were calculated as the
mean value of the outputs of these runs. To demonstrate
the superiority of the proposed LPDGL over linear LPDGL
mentioned in Section III, we also compared the performances
of these two models on various data sets.

A. Toy Data

Synthetic 2-D and 3-D data was adopted in this section
to visualize the transductive and inductive performance
of LPDGL.

1) Transduction on 3-D Data: Two 3-D data sets,
Cylinder&Ring and Knot, were used to test the trans-
ductive ability of LPDGL. The Cylinder&Ring data set
[see Fig. 3(a)—(c)] forms like a cylinder surrounded by a ring,
in which the cylinder with radius 0.2 represents the positive
class and the ring with radius 0.8 constitutes the negative class.

2AGR builds a hyper-graph that is different from other algorithms. The
k-NN graph in LNP is not symmetrical, which is different from that in HF,
LGC, LLReg, PBSSL, LapRLS, LapSVM and LPDGL. S3VM and S4VM
are not graph-based methods, so graph is not needed to train the classifier.
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TABLE I
EXPERIMENTAL RESULTS ON THE BENCHMARK DATA SETS FOR THE VARIETY OF SSL ALGORITHMS [THE VALUES IN THE TABLE REPRESENT THE
ERROR RATE (%). THE THREE BEST RESULTS FOR EACH DATA SET ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY ]

Datasets USPS_Imbalanced BCI g241c g241d Digitl COIL
[(# Labeled Examples) 10 ] 100 10 [ 100 10 [ 100 10 [ 100 10 [ 100 10 ] 100
INN [31] 5.81 49.00 | 48.67 | 47.88 | 43.93 | 46.72 | 4245 | 13.65 | 3.89 | 63.36 | 17.35
SVM [7] 20.03 9.75 49.85 | 3431 | 47.32 | 23.11 | 46.66 | 24.64 | 30.60 | 553 | 68.36 | 22.93
MVU+INN [32] 23.34 6.50 47.89 | 47.15 | 43.01 | 4556 | 38.20 | 14.42 | 2.83 | 62.62 | 28.71
LEM+INN [33] 19.82 7.64 48.74 | 44.83 | 44.05 | 40.28 | 43.22 | 3749 | 2347 | 6.12 | 6591 | 23.27
QC+CMN [1] 13.61 6.36 50.36 | 46.22 | 39.96 | 22.05 | 46.55 | 28.20 | 9.80 3.15
Discrete Reg. [12] 16.07 4.68 49.51 | 47.67 | 49.59 | 43.65 | 49.05 | 41.65 | 12.64 | 2.77 | 6338 | 9.61
TSVM [34] 25.20 9.77 49.15 2471 | 18.46 | 50.08 1777 | 6.15 | 67.50 | 25.80
SGT [19] 25.36 6.80 49.59 | 45.03 | 22.76 | 17.41 | 18.64 | 9.11 - -
Cluster-Kernel [35] 19.41 9.68 4831 | 35.17 | 48.28 | 13.49 4.95 1873 | 3.79 | 67.32 | 21.99
Data-Dep. Reg. [36] 17.96 5.10 50.21 | 47.47 | 41.25 | 20.31 | 45.89 | 32.82 | 1249 | 244 | 63.65 | 11.46
LDS [37] 17.57 4.96 49.27 | 43.97 50.63 | 23.74 | 15.63 | 3.46 | 61.90 | 13.72
Laplacian RLS [9] 18.99 4.68 4897 | 31.36 | 4395 | 2436 | 45.68 | 26.46 | 5.44 292 | 5454 | 11.92
CHM (normed) [38] 20.53 7.65 46.90 | 36.03 | 39.03 | 24.82 | 43.01 | 25.67 | 14.86 | 3.79 - -
LPDGL(Linear) 19.77 13.44 4350 | 2490 | 44.15 | 34.04 | 45.11 | 33.62 | 38.11 | 10.19 | 73.21 | 70.64
LPDGL 17.88 5.09 48.17 | 34.52 | 42773 | 21.54 | 42.01 | 2390 | 5.37 223 | 61.69 | 7.27

4 Positive
° Negative

1 - Unlabeled
i

° Negative
- Unlabeled

Fig. 4. Induction on DoubleMoon and Square&Ring data sets.
(@) and (d) Initial states with the marked labeled examples.
(b) and (e) Induction results, in which the decision boundaries are plotted.
(c) and (f) Induction performances produced by LPDGL (linear).

The Knot data set is shaped like a knot composed of two
crossing rings with radius of 0.8, and each ring represents a
class [see Fig. 3(d)—(f)]. Both data sets are contaminated by
the Gaussian noise of variance 0.1, and each class only has
one labeled example, as shown in Fig. 3(a) and (d).

We adopted (5) and the linear model f(x) = olx,
respectively, to train a transductive LPDGL to classify all the
examples, given very few labeled examples. The parameters
in LPDGL were ¢ = 2, k =5, p = 1, y = 0.001 for
Cylinder&Ring, and ¢ = 05, k =5, f =1,y =1
for Knot. From Fig. 3(b) and (e), we observe that LPDGL
can effectively detect the geometric structure of the data
distribution, which leads to encouraging performances on both
synthetic data sets. Therefore, the proposed algorithm has a
satisfactory transductive ability. Comparatively, the LPDGL
(linear) generates disastrous results [see Fig. 3(c) and (f)]
because both data sets are highly nonlinear.

2) Visualization of Generalizability: LPDGL cannot only
handle the transductive problems, but also shows great poten-
tial for dealing with inductive tasks. The DoubleMoon data
set contains 400 examples, which are equally divided into
two moons centered at (0, 0) and (10, 0), respectively. Each
moon represents a class. The data distribution is displayed
in Fig. 4(a), in which the labeled examples are marked in color.
In Square&Ring, a square centered at (0.5, 0.5) is surrounded

by a ring with the same center. The radius of the outer ring
is 1.3, and the length of each side of the inner square is 1
[see Fig. 4(d)].

In these two data sets, only one labeled example was
selected for each class. The training set ¥ was made up
of these few labeled examples and the abundant unlabeled
examples, based on which (13) was utilized to train an induc-
tive LPDGL. In LPDGL, we set 0 =5anda ==y =1
for both data sets, and established the 9-NN and 7-NN
graphs for DoubleMoon and Square&Ring, respectively.
Fig. 4(b) and (e) reveals that the white and green regions
partitioned by the learned decision boundary are consistent
with the geometry of the training examples. Consequently,
the proposed LPDGL correctly classifies all the training
examples, and a good generalizability is also guaranteed.

Besides, we provide the empirical illustrations on both syn-
thetic data sets to show that the inductive LPDGL derived in
RKHS performs better than the linear LPDGL. Fig. 4(c) and (f)
presents the transductive results and the decision boundaries
on each data set, which clearly reveal that the linear function
f(x) = w’x cannot obtain as good performance as the
LPDGL in RKHS for nonlinear data sets. Therefore, we sug-
gest using (7) to implement transduction, and adopting (12)
for induction.

B. Real Benchmark Data

This section compares the transductive accuracy of LPDGL
with the results reported in [6] on six real benchmark data sets,
including USPS_Imbalanced, BCI, g241c, g241d, Digitl, and
COIL. The detailed information about these data sets and the
performances of different SSL algorithms are provided in [6].

All the algorithms are implemented under / = 10 and
[ = 100 for each data set, and the reported accuracies
are the mean values of the outputs of 12 independent
runs. In each run, the labeled and unlabeled examples
are randomly generated. However, the 12 different parti-
tions of labeled and unlabeled sets in each data set are
identical for all the compared algorithms. The parameters
of LPDGL are optimally tuned to obtain the best perfor-
mance. We set the number of neighbors of every data point
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Experimental results on four UCI data sets. (a) and (e) Iris. (b) and (f) Wine. (c) and (g) BreastCancer. (d) and (h) Seeds. Subplots in the first row

Seeds, we constructed identical 8-NN, 6-NN, 7-NN, and
9-NN graphs correspondingly for HF, LGC, LLReg, PBSSL,
LapRLS, LapSVM, and LPDGL. Parameters f and y in
LPDGL were set to 1, and two simulations of S4VM
with RBF kernel and linear kernel were conducted on the

Fig. 5.
compare the transductive performance of the algorithms, and the subplots in the second row compare their inductive performance.
TABLE II
SUMMARY OF FOUR UCI DATA SETS
\ Iris \ Wine BreastCancer Seeds
#Instances 150 178 683 210
#Attributes 4 13 10 7
#Classes 3 3 2 3

k = 10,8, 40, 30,20,7 for USPS_Imbalanced, BCI, g24Ic,
g241d, Digitl, and COIL, respectively, and the widths of
RBF kernel are ¢ = 2,1,1, 1, 5,2 correspondingly. Table I
shows the error rates of different algorithms, which reveals that
LPDGL achieves comparable performances with the typical
state-of-the-art SSL algorithms. In particular, we observe that
the linear LPDGL is outperformed by nonlinear model in all
the data sets except BCI. We also want to mention that the rela-
tive size of positive and negative classes in USPS_Imbalanced
is 1:4, so the experimental results on USPS_Imbalanced
demonstrate that LPDGL can perfectly handle the situations
when the examples of different classes are imbalanced.

C. UCI Data
We chose four University of California Irvine (UCI)

machine learning repository data sets [39], Iris, Wine, Breast-
Cancer, and Seeds, to compare the performance of LPDGL
with other baselines. The detailed information of the four
data sets is summarized in Table II. Throughout this paper,
we adopt the one-versus-rest strategy to deal with multiclass
classifications.

We first evaluated the transductive abilities of HF, LGC,
AGR, LNP, LLReg, PBSSL, LapRLS, LapSVM, S4VM, and
LPDGL by observing the classification accuracies with respect
to different [ for each data set. The reported results are
averaged over the outputs of 10-independent runs under
each /. In AGR, we chose the number of anchor points
s = 40, 40, 30, 50 for Iris, Wine, BreastCancer, and Seeds data
sets, respectively, and 5-NN graphs were constructed on these
anchor points. The regression matrix in AGR was established
by local anchor embedding, which was recommended by
the authors [24]. The parameter A in LLReg was set to 1
for all the UCI data sets. In Iris, Wine, BreastCancer, and

four UCI data sets. The transductive results are presented
in Fig. 5(a)—(d). We observe that some of the baselines achieve
very encouraging performances on these data sets, e.g., LGC
on Iris, S4VM on Wine, AGR on BreastCancer, and so on.
However, the accuracies obtained by these baselines can still
be improved by the proposed LPDGL, which demonstrates the
strength of our algorithm.

To test inductive ability, we adopted LNP, LapRLS,
and LapSVM as baselines because they are state-of-the-
art inductive SSL algorithms. We not only compared
the classification accuracies of LPDGL and other
baselines, but also used the 5 x 2 cross-validation F-test
(5 x 2 cv F-test) proposed by [40] to make statistical
comparisons. The F-statistics value produced by the
5 x 2 cv F-test is to identify whether two algorithms
achieve the same performance on the test set. The null
hypothesis is that they do obtain the same test accuracy,
and we reject this hypothesis with 95% confidence if the
F-statistics value is >4.74. For conducting the 5 x 2 cv
F-test, five replications of twofold cross validation were
performed, and the four data sets were equally split randomly
into training and test sets in each replication; however,
the splits in the five replications were identical for all the
compared algorithms. In the training and test sets, the number
of examples belonging to a certain class is proportional
to the number of examples of this class in the entire data
set. Given mf’ ) as the difference of error rates generated
by two algorithms on fold j (j 1,2) of replication
i @ 1,2,...,5), then the mean error rate and the
variance of replication i are m; (ml(l) +ml@)/2 and

2 2
2 (ml(l) —m;) + (m(z) —m;) , respectively. Therefore,

S = ;
5
2=t

1

according to [40], the F-statistics value F
.2

>3 m) /237 s? obeys the F-distribution with

10 and 5 degrees of freedom.
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Fig. 6. Empirical studies on the parametric sensitivity of LPDGL. (a) and (e) Iris. (b) and (f) Wine. (c) and (g) BreastCancer. (d) and (h) Seeds. Subplots

in the first row show the transductive results, and the subplots in the second row display the inductive results.

TABLE III
F-STATISTICS VALUES OF INDUCTIVE ALGORITHMS VERSUS LPDGL ON
UCI DATA SETS (THE RECORDS <4.74 ARE MARKED IN RED, WHICH
MEAN THAT THE NULL HYPOTHESIS IS ACCEPTED)

[ [ T ] LINP [ LapSVM | LapRLS |
6 16.69 26.31 6.53
12 17.23 160.72 19.69
Iris 18 8.0 132.11 28.17
24 9.7 120.23 30.68
30 5.5 343.85 19.01
6 13.87 23.12 2.94
12 12.70 14.81 1.94
Wine 18 19.18 49.67 2.67
24 12.89 22.38 1.13
30 11.25 43.12 1.74
4 491 2.52 999.31
8 1.81 11.99 384.48
BreastCancer 12 6.08 24.06 121.20
16 2.40 24.51 23.79
20 4.03 16.57 24.21
6 20.85 36.36 8.80
12 19.62 7.03 24.95
Seeds 18 32.18 31.78 52.62
24 7.61 7.56 73.38
30 8.76 12.01 33.81

In the four data sets, the established graphs for induction
were the same as those for transduction. The weight o of
the inductive term in (13) was set to 1 on all UCI data sets,
and the parameters in LapRLS and LapSVM were also tuned
properly to achieve the best performance. We reported the
test accuracies as the mean outputs of five replications of
twofold cross validation in every data set, and they are plotted
in Fig. 5(e)—(h). We observe that LPDGL outperforms LNP,
LapRLS, and LapSVM significantly on the UCI data sets with
the exception of Wine. On the Wine data set, LPDGL achieves
comparable performance with LapRLS. The F-statistics values
of baselines versus LPDGL are listed in Table III. The
acceptable cases are marked in color, which means that the
performance of the two algorithms is comparable. Note that
the null hypothesis is rejected in most cases, so the superiority
of LPDGL to the compared algorithms is statistically
demonstrated. However, the null hypothesis is accepted
on Wine for LapRLS, because there is no significant

difference between the error rates of LPDGL and LapRLS,
as revealed by Fig. 5(f), so the performances of the two
algorithms on the Wine data set are considered to be essentially
identical.

We studied the parametric sensitivity for both transductive
and inductive tasks in particular. We observed accuracies under
[ = 30 on Iris, Wine, Seeds, and [ = 20 on BreastCancer,
with a wide choice of parameters a, £, and y (Fig. 6).
Recall that we have theoretically proved that the transduc-
tive performance of LPDGL is very robust to the variations
of f and y. Here, we empirically verify this point by
examining the accuracies with one parameter changed and
the other fixed to 1. Fig. 6(a)-(d) suggests that these two
parameters have little impact on the transductive performance,
which is consistent with our theoretical understanding in
Sections II-A and II-B. The parametric sensitivity under
the inductive case was also investigated by varying one of
a, B, and p, and fixing the remaining two parameters to 1.
Fig. 6(e)-(h) reveals that although the parameters cover a
wide range, i.e., 1072-102, the accuracy remains substantially
unchanged on the four data sets. Therefore, we conclude
that LPDGL shows profound parametric sensitivity for both
transductive and inductive settings.

D. Handwritten Digit Recognition

The USPS data set® was adopted to assess the ability
of algorithms to recognize handwritten digits. This data
set contains 9298 digit images belonging to 10 classes,
i.e., digits 0-9. The resolution of all images is 16 x 16, so the
pixelwise feature we adopted was 256 dimensions, in which
every dimension represents the gray value of corresponding
pixels.

We used the whole data set to test the transductive per-
formances of various algorithms. A number of the examples
were selected as a labeled set, and the rest were taken as
the unlabeled examples. The classification accuracies were
particularly observed when / changed from 100 to 500. The
10-NN graph was established, and the parameter ¢ for com-
puting the edge weights was set to 5. For AGR, 300 anchor

3 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Fig. 7. Experimental results on USPS data set. (a) Transductive results.
(b) Inductive results.

points were automatically generated by K-means clustering,
and a 7-NN graph was constructed on these anchor points.
In addition, # and y in LPDGL were tuned to 10 and 1, and
we used the default parameter settings in S4VM.

Fig. 7(a) shows the transductive results. It is observed that
LPDGL achieves higher classification accuracy than other
baselines. By comparison, LGC and HF achieve slight lower
accuracies than LPDGL, i.e., 95% approximately. LapSVM
and LapRLS achieve similar results. The performances of LNP,
LLReg, PBSSL, S4VM, and AGR are not as satisfactory as
the other five methods. Therefore, the proposed LPDGL is
very effective on handwritten digit recognition, though only a
small number of labeled examples are given.

To test the inductive abilities of algorithms, we split the
original data set into a training set and a test set. 600 examples
per class were extracted to form the training set, and the
remaining 3298 examples served as the test set. The weight
o of the inductive term in (13) was tuned to 1 to extend
LPDGL to out-of-sample data. Fig. 7(b) reveals that LPDGL is
superior to LNP, LapRLS, and LapSVM in terms of inductive
accuracy. Moreover, it can be observed that the inductive
performance of LPDGL does not decrease the transductive
settings too much. The reason is that LPDGL has successfully
discovered the manifold from the training set in advance,
so even though the test data are previously unseen, LPDGL can
precisely predict their labels according to their locations on the
manifold. Therefore, LPDGL achieves similar performances
on transductive and inductive settings, which again demon-
strates generalizability. Comparatively, the LPDGL (linear)
is significantly outperformed by the kernerlized LPDGL for
both transductive and inductive settings, which also shows the
strength of the developed nonlinear model.

E. Face Recognition

Face recognition has been widely studied as a traditional
research area of computer vision because of the extensive
practical demands. LPDGL was performed on two face data
sets: Yale* and Labeled Face in the Wild (LFW)® [41]. The
face images in Yale are collected in a laboratory environment.
In contrast, the images in LFW are directly downloaded from
the web, and faces are presented in natural scenes.

1) Yale: The Yale face data set contains 165 grayscale
images of 15 individuals. Each individual has 11 face images
covering a variety of facial expressions and configurations,
including: center light, wearing glasses, happy, left light,

4http://cvc.yale.edu/projects/yalefaces/yalefaces.html
5 http://vis-www.cs.umass.edu/Ifw/
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TABLE IV
TRANSDUCTIVE COMPARISON ON Yale DATA SET

[ [ =30 [ =60 ]
LGC 0.66 4+ 0.06 0.76 £ 0.02
HF 0.65 4+ 0.04 0.79 £ 0.01
AGR 0.50 4+ 0.03 0.64 £ 0.02
LNP 0.32 +0.05 0.34 £0.04
LapRLS 0.63 4+ 0.05 0.71 £0.03
LapSVM 0.63 4+ 0.05 0.72 £ 0.03
S4VM(Linear) 0.27 +0.07 0.52 + 0.06
S4VM(RBF) 0.11 +£0.02 0.23 +0.04
LLReg 0.65 4+ 0.08 0.79 + 0.09
PBSSL 0.51 +0.05 0.67 + 0.02
LPDGL(Linear) 0.65 £ 0.04 0.79 £0.01
LPDGL 0.67 +0.03 0.81 +0.01

TABLE V
INDUCTIVE COMPARISON ON Yale DATA SET

[ [ =30 [ =60 ]
LNP 0.10 4+ 0.04 0.15+0.05
LapSVM 0.69 4+ 0.01 0.77 £ 0.01
LapRLS 0.68 4+ 0.01 0.79 + 0.01
LPDGL(Linear) 0.58 £+ 0.06 0.80 £ 0.01
LPDGL 0.69 4+ 0.04 0.83 +0.03

wearing no glasses, normal, right light, sad, sleepy, surprised,
and wink. The resolution of every image is 64 x 64, so we
directly rearranged each image to a 4096-D long vector as
input for all the algorithms.

The transductive abilities of LPDGL and other baselines
were first evaluated. In this experiment, we chose ¢ = 10
and k = 5 for graph construction, and other parameters for
LPDGL were f = y = 1. In AGR, a 7-NN graph was
built on the 35 anchor points. In LNP, we established
a 9-NN graph to achieve the best performance. In LLReg,
A was optimally tuned to 1. The accuracies of algorithms with
different [ are listed in Table IV, in which the best record
under each / is marked in red. The proposed LPDGL is able to
achieve the highest accuracy, and the small standard deviations
suggest that LPDGL is very robust to the choice of labeled
examples.

Inductive performance was also studied on the Yale data set.
We chose the first six examples of every individual to establish
the training set, and the other five examples made up the test
set; the sizes of the training and test sets were 6 x 15 = 90
and 5 x 15 = 75, respectively. Labeled sets of size [ = 30
and 60 were then randomly generated in the training set. The
main difficulty for induction on Yale is that the expressions
or appearances of test faces are never observed in the training
set, which requires the classifiers to be immune to illumination
or changes in facial expression. The inductive accuracies are
compared in Table V and suggest that LPDGL outperforms
other baselines when [ varies from small to large. In particular,
LPDGL achieves 83% accuracy when [ = 60, which is a very
encouraging result. It is widely acknowledged that although
faces have different expressions or observation angles, they are
actually embedded in a potential manifold [33]. Fortunately,
LPDGL is exactly developed on the manifold assumption,
so it is able to recognize faces accurately even though their
appearance differs dramatically. It is also worth pointing
out that we have only adopted the simple pixel-wise gray
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TABLE VI
TRANSDUCTIVE COMPARISON ON LFW DATA SET
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TABLE VIII
TRANSDUCTIVE RESULTS ON HockeyFight DATA SET

[ [ 1=50 [ 1=100 [ 1=150 [ 1=200 | [ [ 1=40 | 1=80 [ I1=120 | 1=160 |
LGC 0.50 £0.07 | 0.60+0.05 | 0.65+0.08 | 0.69+£0.06 LGC 0.80 £0.03 | 0.82£0.02 | 0.83£0.02 | 0.84 £ 0.01
HF 0.66 £0.03 | 0.78+0.02 | 0.834+0.01 | 0.87+0.01 HF 0.80+0.02 | 0.8440.01 | 0.86+0.01 | 0.87 4+ 0.01
AGR 0.60+0.03 | 0.71+0.01 | 0.76£0.02 | 0.80+0.01 AGR 0.79+0.02 | 0.8240.01 | 0.83+0.01 | 0.83 4 0.01
LNP 0.32£0.07 | 0.38+0.16 | 0.57+0.12 | 0.59 £0.11 LNP 0.6140.08 | 0.6540.10 | 0.65+0.09 | 0.67 +0.11
LapRLS 0.48+£0.03 | 0.624+0.04 | 0.71+0.03 | 0.75+0.03 LapRLS 0.72+£0.02 | 0.76 +0.01 | 0.79 +0.01 | 0.79 + 0.01
LapSVM 0.57+£0.02 | 0.70+0.03 | 0.74+0.03 | 0.76 £0.03 LapSVM 0.67+0.03 | 0.66+0.02 | 0.70+0.02 | 0.71 4 0.01
S4VM(Linear) | 0.56 +0.05 | 0.684+0.03 | 0.73£0.03 | 0.77 4+ 0.02 S4VM(Linear) | 0.80 + 0.05 | 0.84 4 0.02 | 0.84+0.03 | 0.86 + 0.01
S4VM(RBF) 0.45+0.06 | 0.61+0.02 | 0.70 £0.02 | 0.73 £ 0.02 S4VM(RBF) 0.81+0.03 | 0.84+0.01 | 0.8640.01 | 0.87 4 0.01
LLReg 0.52+£0.04 | 0.69 £ 0.02 0.86 4 0.02 | 0.88 +0.01 LLReg 0.78+0.04 | 0.79 +0.01 0.82 + 0.01 0.82 + 0.01
PBSSL 0.33+£0.03 | 0.464+0.02 | 0.58+0.02 | 0.68 +0.02 PBSSL 0.7440.02 | 0.76 +£0.01 | 0.78 £0.01 | 0.78 +0.01
LPDGL(Linear), 0.43 £0.02 | 0.59+0.04 | 0.64+0.02 | 0.71+0.02 LPDGL(Linear) 0.81 £0.02 | 0.84 £0.02 | 0.87 £ 0.00 | 0.87 £ 0.02
LPDGL 0.71 4+ 0.02 0.81 4+ 0.02 0.86 4+ 0.01 0.90 4+ 0.01 LPDGL 0.81 4+ 0.03 0.85 + 0.01 0.87 4+ 0.01 0.88 + 0.01

TABLE VII TABLE IX
INDUCTIVE COMPARISON ON LFW DATA SET INDUCTIVE RESULTS ON HockeyFight DATA SET

| I ‘1:50 [ 1=100 [ (=150 | (=200 | l =@ [ T=% [ =10 [ =160 ]
LNP 0.30 £0.07 | 0.38£0.09 | 0.45£0.13 | 0.45 £ 0.09 =7 ST o0 05T 00s Toss 010 T 00 T 11
LapSVM 0.65+0.01 | 0.6940.03 | 0.7540.02 | 0.76 + 0.01 : : : : : : : :

LapSVM 0.59+£0.02 | 0.6140.01 | 0.6140.01 | 0.65% 0.01
LapRLS 0.67+£0.04 | 0.734+0.02 | 0.78 +£0.01 | 0.79 +0.01
. - - - LapRLS 0.70 +£0.01 | 0.7340.01 | 0.734£0.01 | 0.74 +0.01
LPDGL(Linear)] 0.68 £ 0.04 | 0.78 =0.03 | 0.81 £ 0.03 | 0.83 + 0.01 LPDGL(Cimean| 075 £0.04 | 076 £ 0.0 | 076 £0.01 | 076 £0.01
LPDGL 0.70 £ 0.03 | 0.78£0.03 | 0.80 £0.02 | 0.83 +0.02 L : : : : : : :
LPDGL 0.714£0.02 | 0.7340.03 | 0.7440.02 | 0.75 + 0.01

values of images as features. If more high-level features are
utilized, the performance of LPDGL is expected to be further
improved.

2) LFW: LFW is a gigantic collection of face images gath-
ered directly from the web. The facial expressions, observation
angle, illumination conditions, and background setting are not
intentionally controlled for recognition; therefore, identifying
faces in such unconstrained situations is a big challenge. This
data set contains >13 000 face images, and each face is labeled
with the name of the person. The faces in all the images are
detected by the Viola—Jones detector [42].

Most people in the original LFW have fewer than five
images, which is insufficient for splitting into training and
test sets, so we used a subset of LFW by choosing persons
who have more than 30 face images. We chose the
images of politicians Toledo, Sharon, Schwarzenegger, Powell,
Rumsfeld, Bush, and Arroyo, and the images of sports stars
Agassi, Beckham, and Hewitt. There were thus 392 examples
belonging to 10 people in total in the subset. We adopted
the 73-D feature developed by [43], which describes the
biometrics traits of visual appearance, such as gender, race,
age, and hair color.

To test the transductive performance, a 6-NN graph with
o = 5 was built on the entire data set. Other parameters
in LPDGL were f = y = 1. Algorithms are compared
in Table VI, in which the best performance under each [
is marked in color. It is observed that LPDGL achieves
very satisfactory results and significantly outperforms other
methods. In particular, the proposed LPDGL obtains very high
accuracy under relatively small [, e.g., 71% under
[ = 50 and 81% under / = 100, which further demonstrates
the effectiveness of LPDGL.

Inductive experiments were conducted by separating the
data set into a training set of 250 examples and a test set
of 142 examples. The inductive results of algorithms under
different [ are listed in Table VII, from which we find that
the proposed LPDGL achieves the best performance compared

with other baselines. Table VII also reveals that the accuracy of
LPDGL exceeds 80% when [ is >150, so LPDGL has strong
potential for successful unconstrained face recognition.

F. Violent Behavior Detection

In recent years, various intelligent surveillance techniques
have been applied to ensure public safety. One desirable
application is to permit computers automatically detect vio-
lent behavior, such as fighting and robbery, in surveillance
videos. In this section, we utilize the proposed LPDGL to
detect fight behavior. The HockeyFight® data set is made
up of 1000 video clips collected in ice hockey competitions,
of which 500 contain fight behavior and 500 are nonfight
sequences. The task is to identify the clips with fighting.
As with [44], we adopted the space-time interest points and
motion SIFT as action descriptors, and used the bag-of-words
approach to represent each video clip as a histogram over
100 visual words. Every clip in the data set was, therefore,
characterized by a 100-D feature vector.

A 5-NN graph was exploited to evaluate the transductive
performance of HF, LGC, LLReg, PBSSL, LapRLS, LapSVM,
and LPDGL. In LNP and AGR, we chose 20 and five
neighbors, respectively, for graph construction. Transductive
accuracies with different / are listed in Table VIII. We observe
that HE, S4VM, and LPDGL already achieve >80% accuracy,
which is a very encouraging result. Of particular note is that
LPDGL can still improve the performances of S4VM and HF,
so its superiority is demonstrated.

Inductive experiments were performed by splitting the
original data set into a training set of 600 examples and a
test set of 400 test examples. Fight clips and nonfight clips
constituted 50% for each of both the training set and the
test set. The results of the algorithms are displayed in Table IX,
in which the best performance under each / is marked in red.
We find that LPDGL obtains very impressive inductive results.

6http://visilab.etsii.uclm.es/personas/oscar/FightDetection/index.html
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VI. CONCLUSION

This paper has proposed a manifold-based SSL algorithm
called LPDGL. By adopting the DGL, a local smoothness term
was naturally incorporated. This term can effectively prevent
erroneous label propagation between classes by suppressing
the labels of ambiguous examples, such as the bridge point
mentioned in our paper. Fig. 2 implies that the only difference
between LapRLS and inductive LPDGL is that LPDGL has
the local smoothness term but LapRLS does not, so the better
performances of LPDGL over LapRLS in experiments also
validates the importance of this term.

The proposed method has several profound properties,
which lead to the superiority of LPDGL over other
SSL algorithms. First, LPDGL is formulated as a convex
optimization framework, so the obtained decision function
is globally optimal. Second, the classification performance is
insensitive to the change of parameters, which indicates that
the parameters in LPDGL are very easy to tune. Third, there
exists a theoretical bound for the generalization error, so the
test examples can be classified reliably and accurately. Fourth,
LPDGL can be regarded as a unified framework of various
SSL algorithms, so it combines the advantages of different
methodologies. Finally, the standard deviations of LPDGL
listed in Tables IV-IX are very small, which reflects that the
selection of initially labeled examples will not influence the
final results significantly.

The primary computational burden of LPDGL lies in the
inversion of the matrices in (7) and (14). Fortunately, the order
of the matrix to be inverted in (7) is equal to the examples’
dimension d, so inverting such a matrix is usually efficient.
However, the matrix to be inverted in (14) is of size n x n,
which can be quite large if there are massive training examples.
Therefore, tackling the big data problem for inductive LPDGL
is an important trend for future investigation.
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