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Efficient Saliency-Model-Guided
Visual Co-Saliency Detection
Yijun Li, Keren Fu, Zhi Liu, Member, IEEE, and Jie Yang

Abstract—This letter proposes a novel framework to detect
common salient objects in a group of images automatically and
efficiently. Different from most existing co-saliency models which
directly redesign algorithms for multiple images, the saliency
model for a single image is fully exploited under the proposed
framework to guide the co-saliency detection. Given single image
saliency maps, a two-stage guided detection pipeline led by queries
is proposed to obtain the guided saliency maps of the image set
through a ranking scheme. Then the guided saliency maps gener-
ated by different queries are fused in a way that takes advantages
of both averaging and multiplication. The proposed model makes
existing saliency models work well in co-saliency scenarios. Ex-
perimental results on two benchmark databases demonstrate that
the proposed framework outperforms the state-of-the-art models
in terms of both accuracy and efficiency.

Index Terms—Co-saliency detection, efficient manifold ranking,
fusion, saliency model.

I. INTRODUCTION

T HE era of Big Data and ubiquity of Internet use result in
an explosion of information medium and challenge us to

deal with a great amount of subjects instead of a single one when
facing a specific task. Co-saliency detection is exactly such a
task that it aims at highlighting the common salient objects in a
group of images to simulate human visual attention mechanism.
It derives from saliency detection which targets on popping out
the salient object in a single image and has become a booming
research issue in recent years. When the attention is shifted from
the single to multiple subjects, a salient object within one image
could be no longer salient anymore among the image corpus.
Detection results of a co-saliency model are a set of co-saliency
maps, which are useful in the subsequent processing such as
object co-segmentation [1] and co-recognition [2].
The co-saliency detection begins with some proposed models

for a pair of images. In an early work [3] where two images
are captured under highly similar background, the local struc-
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ture changes induced by salient objects are exploited to train
a co-saliency model. However, as different background could
be a more general case, the following models no longer require
any constraints on background. In [4], the joint information pro-
vided by an image pair is used under a pre-attentive scheme.
In [5], co-saliency maps are generated via the combination of
single saliency maps and an inter-image saliency map that is
based on a co-multilayer graph.
When it comes to a collection of images, several co-saliency

models that abide by a fundamental diagram have emerged.
They are basically formulated as follows:

(1)

where is either generated by a saliency model [1]
or redesigned as the intra-image saliency [6]–[8] for each
image, and (correspondence) describes how
frequently the object recurs across the image collection [1].
However, such a pipeline has several limitations:
(i) If ever the common salient parts fail to be detected
in by a saliency model, the multiplication
operation cannot re-pop them out even they have high

values.
(ii) The redesign of algorithm often has a high com-

putational cost because comparisons between pixels/re-
gions are no longer within one image, but across the image
collection, which restricts the practical use of the model.

(iii) The case with irrelevant images which do not contain
common salient objects is rarely considered.

One most related work [9] generates the co-saliency map by
fusing saliency maps generated by different saliency models
based on rank-one constraint. However, it is complex and
time-consuming to run multiple saliency models. Therefore we
propose an efficient co-saliency model by fully exploiting one
saliency model to solve aforementioned problems. The main
contributions of this letter lie in the following two aspects:
(i) A saliency-model-guided scheme is proposed to make ex-
isting saliency models work well in co-saliency scenarios.
Not only non-common parts are suppressed well, but also
the common salient object which originally fails to be de-
tected is successfully recovered.

(ii) With the model accuracy guaranteed, the model efficiency
is significantly enhanced as well.

The remainder of this letter is organized as follows. Section II
describes the proposedmodel in details. Section III conducts ex-
periments to compare the proposed model with existing coun-
terparts and results are also analyzed. The conclusion is given
in Section IV.
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Fig. 1. The framework of our co-saliency model. The red box in (d) represents the query image and each row presents corresponding ranking results. (a) Input
image set (b) Single image saliency map (c) First stage guided detection results (d) Second stage guided detection results (red: query) (e) Fusion results (f) Final
co-saliency maps.

II. METHODOLOGY

The framework of our model is shown in Fig 1. It consists
of three main steps, i.e. single image saliency map, guided
co-saliency detection and fusion. Details are given in the
following subsections.

A. Single Image Saliency Map

Instead of specifically redesign intra-image or inter-image
saliency detection algorithm arduously, our approach directly
takes advantage of saliency maps generated by state-of-the-art
saliency models. Given a collection of images , our
previous validated work [10] is selected to generate the cor-
responding saliency maps . However, other saliency
models are also feasible(see the results in Section III-A). In [10],
the boundary prior is mainly utilized to regard four borders of
the image as the potential background. With four virtual nodes
set to connect four borders respectively under a graph structure,
the geodesic saliency measure is used to obtain four saliency
maps. Finally fourmaps are combined to render the single image
saliency map (Fig. 1(b)).

B. Guided Co-Saliency Detection

Single image saliency maps could be spotty but they provide
us with sufficient information of the common salient object for
the subsequent co-saliency detection. In this section we pro-
pose a two-stage query-based detection scheme under a ranking
framework. The co-saliency value is measured based on their
relevances to the given query. Naturally, the ranking scheme
and query selection are two important issues to consider in this
step.
For the ranking scheme, we adopt the efficient manifold

ranking (EMR) [11] which has been proved accurate and
efficient in image retrieval. The EMR learns a ranking function
by exploiting the intrinsic manifold structure of data and an
anchor graph to accelerate the computation. For our co-saliency
model, data points involved in ranking
are color vectors of all pixels in the image collection.
We cluster all data points to classes using k-means and select
clustering centers as anchors . Each data
point is connected to its nearest anchors and the

connection is assigned with the weight defined in Eq. (2) to
obtain a weight matrix :

(2)
where is the Epanechnikov quadratic kernel and

where is the th closest anchor of . The final
adjacency matrix . Based on the graph, the optimal
ranking function can be written as:

(3)

where is a binarized vector with ‘1’ for queries and ‘0’ for
the unlabelled. where is a diagonal matrix with

. and are the identity matrix with the
dimension of and . is a weight parameter, and set as
0.5 in our experiment. Please refer to [11] for more details. The
ranking scores in the vector are then directly assigned to all
pixels as the their new saliency values.
Then two stages of the query selection are conducted to form

our two-stage detection scheme. In the first stage, we reshape
into a vector and binarize it as by a threshold

. The query vector is defined as:

(4)

and thus queries of the image collection are utilized together to
obtain new saliency maps with Eq. (3). This step
is critical since it recovers co-salient parts missed in the single
image saliency map. To put all queries with confidence of ‘1’ in
a holistic way means that we desire to maximally pop out object
parts that are similar to queries. As shown in the 5th column of
Fig. 1(c), the body of the white goose is successfully recovered
from that of Fig. 1(b) because white parts are detected in top
four images and hence Eq. (3) guides similar white parts in the
5th image to rank high. Unfortunately, as queries are not all pre-
cise, results are still not satisfying since non-common parts are
also likely to be recovered and falsely highlighted background
regions need to be suppressed.
In the second stage, we reshape into a vector . Dif-

ferent from the first stage, queries in each image take turns to be
the query. Specifically, in each round, is regarded as the query
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vector and other are set to zero as unlabelled to form
. Therefore for each image , saliency maps
are generated. Fig. 1(d) shows an exemplary result of the second
stage guided ranking scheme where the query is bounded in the
red box in each round.
Thekey insightof theproposed two-stageguidedprocess illus-

trates the essence of . The first stage is exploited
to promote similar pixels and prevailing saliency values through
the image collection to effectively recover and suppress some
regions. The effect of the second stage is more obvious. As the
common salient object exists in most images, ever since it is suc-
cessfully detected in some image , similar parts in other im-
ages will be popped out with relatively high ranking score when

is set as the query. As for non-common parts, they are ex-
pected to get low saliency values when the query image doesn’t
contain these non-common parts. The most representative one is
the 5th row of Fig. 1(d) where the 5th map serves as the query.
Thequerywithhighprobability of being salient object is thebody
and the beak. Therefore similar parts in other five images are ex-
pected to be detected and dissimilar parts like the dark goose and
red pens in the 3rd and 6th image are suppressed. Next a fusion
scheme is required to reinforce the saliency value of common
salient parts and alleviate that of non-common parts.

C. Fusion

Given for , we propose a fusion strategy to
obtain the initially guided co-saliency map . Popular ways
of combination of multiple saliency maps are averaging [12]
and multiplication [13]. We take advantages of both to better
highlight the co-salient object and suppress the background. In
each , we set a threshold by employing algorithm
[14] as a criterion to distinguish the co-salient object and the
background. A recorder is defined to count how many
times a pixel is classified as being co-salient among maps.
Finally the fusion strategy is defined as follows:

(5)

where is the pixel index in and is the number of images
in the collection.
Since all pixel values in maps are normalized to the range

of [0,1], the multiplication of values will be much less than
any of them. It works well as what we expect for background
saliency, i.e., the smaller, the better. However in such a way
of simple multiplication, co-salient parts will also be affected,
namely being over-suppressed. To avoid over-suppression and
maximally stretch out the difference on co-saliency values be-
tween co-salient object and background, we additionally exploit
the average strategy. For a pixel in , if it appears to be
salient in most of maps in , where “most” means
more than a half of images here, it will be regarded as being
co-salient and its co-saliency is obtained by averaging the corre-
sponding values. Fig. 1(e) verifies the effectiveness of our fu-
sion strategy. For the common salient white geese, though they
are not detected in the 6th row of Fig. 1(d), the averaging op-
eration keeps their high saliency values. For non-common parts
like the dark goose and red pens, though they gain high values

Fig. 2. Examples of co-saliency detection on CP database.

Fig. 3. Examples of co-saliency detection on iCoseg database.

Fig. 4. Examples of irrelevant images involved (yellow: irrelevant images).

when regarded as the query, other five detection results guided
by other queries determine that themultiplication should be con-
ducted to suppress them.
To eliminate unnecessary artifacts like some isolated salient

pixels or small holes within a co-salient region, a simple smooth
post-processing is performed to obtain final co-saliency maps.
Each image is segmented by mean shift segmentation [15], and
the saliency of each region is measured as the average saliency
values of pixels within itself.

III. EXPERIMENTS AND COMPARISONS

The proposed co-saliency model has been tested on two
benchmark databases, i.e., the CP database [5] which contains
105 image pairs, and a subset of the iCoseg database [16]
which contains 185 images from 37 classes, each of which
has 5 images. All parameters are set to default values in their
original works [10][11] except for the number of anchors
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Fig. 5. Precision-Recall curves comparisons: (a)–(d) Comparisons between different co-saliency models on different databases; (e)–(j) Comparisons between the
proposed co-saliency model guided by different saliency models on CP database. (a) PR curves on CP database (b) PR curves on iCoseg database (c) F-measure
curves on CP database (d) F-measure curves on iCoseg database (e) FT (f) MR (g) RC (h) GC (i) PCA (j) ST.

where is the number of images, the
number of nearest anchors to connect . It is justified in
[11] that the performance is not sensitive to both and . For
the mean shift segmentation in the last step, we set its parameter
of allowable minimum region area to 0.2% of the image area.

A. Performance Comparisons

We evaluate our model against several mainstream
co-saliency detection models, including PC [4], CG [5],
CB [6], HS [7] and RFPR [8]. Visually, Fig. 2 and Fig. 3
demonstrate the validity and efficacy of our model both for
the image pair and image collection. It can be seen that our
method gains higher quality saliency maps compared with
others. Then we extend the original 5-image set in the iCoseg
database [16] to a 10-image set with several relevant and
irrelevant images involved. Fig. 4 presents exemplary detection
results. The co-saliency maps of irrelevant images are almost
black although they contain salient objects, indicating a wider
applicable scope of our model.
Similar as [10], we also implement quantitative evaluation by

employing two criteria: the precision recall (PR) curve and the
F-measure curve.
where is set as 0.3 to emphasize the precision [13][17]. Intu-
itively, these curves represents the robustness of the algorithm.
Fig. 5(a)–(d) present the PR and F-measure curves of all models
and it can be seen that our model outperforms most existing
co-saliency models. In Fig. 5(a), the PR curve of our model is
a little faded against HS [7] and RFPR [8] due to the image
pair. The information for guiding is limited as there are only
two images. As the number of images increases in each image
class of the iCoseg database, Fig. 5(b) shows that our model
surpasses HS and RFPR. Besides, the F-measure curves shown
in Fig. 5(c)–(d) tell that our model is stable in a wider range of
threshold than any other model.
Then we replace the saliency model in the first step with

several other saliency models including FT [18], RC [19], PCA
[20], MR [13], GC [17] and ST [21]. The guided effect of
each input saliency model under our framework is shown in
Fig. 5(e)–(j). The remarkable improvement of curves illustrates
the following two advantages of our model:

TABLE I
AVERAGE RUNNING TIME (SECONDS PER IMAGE)

(i) Our co-saliency model does improve the detection results
of the saliency model without any attenuated perfor-
mance. As shown in Fig. 5(b), even our previous saliency
model [10] (Ours single) outperforms the co-saliency
model CB [6]. It clearly implies that starting from ex-
isting proven saliency models is a feasible and better way
for co-saliency detection.

(ii) The higher precision the saliency model achieves, the
better performance of the co-saliency model is. That’s
why we select [10] in our first step.

B. Running Time

In Table I we compare the average running time of our
co-saliency model with others. Experiments are taken on a
laptop with an Intel 1.8 GHz CPU and 8 GB RAM. PC [4]
and CG [5] are only designed for image pairs. From Table I, it
is clearly observed that the computational cost is significantly
reduced due to the simple matrix multiplication of EMR [11].
One more critical factor that determines the efficiency is the
anchor generation step. To find clustering centers from large
amount of pixel data, the computational cost is reduced by
setting the maximal iteration time of K-means to only 5 in our
implementation.

IV. CONCLUSION

In this letter, we propose a co-saliency model that makes
existing saliency models work well in co-saliency scenarios.
Given single image saliency maps as initial queries, a two-stage
scheme is proposed to obtain the guided saliency maps of
the image set through a ranking framework. Then the guided
saliency maps are fused to highlight common salient objects
and to suppress non-common parts. Experimental results
demonstrate the better performance of our proposed model in
terms of both accuracy and efficiency.
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