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a b s t r a c t

Graph-based semi-supervised learning has been intensively investigated for a long history. However,
existing algorithms only utilize the similarity information between examples for graph construction, so
their discriminative ability is rather limited. In order to overcome this limitation, this paper considers
both similarity and dissimilarity constraints, and constructs a signed graph with positive and negative
edge weights to improve the classification performance. Therefore, the proposed algorithm is termed as
Constrained Semi-supervised Classifier (CSSC). A novel smoothness regularizer is proposed to make the
“must-linked” examples obtain similar labels, and “cannot-linked” examples get totally different labels.
Experiments on a variety of synthetic and real-world datasets demonstrate that CSSC achieves better
performances than some state-of-the-art semi-supervised learning algorithms, such as Harmonic
Functions, Linear Neighborhood Propagation, LapRLS, LapSVM, and Safe Semi-supervised Support Vector
Machines.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) is widely adopted in many
situations where the labeled examples are insufficient while the
unlabeled examples are extremely abundant. Though these mas-
sive unlabeled examples do not have explicit labels, they provide
the prior of underlying data distribution, which can support
accurate classifications along with the labeled examples.

However, the unlabeled examples should be used properly with
certain assumptions, otherwise they may hurt the performance
instead. Two commonly adopted assumptions are cluster assump-
tion and manifold assumption [1]. Cluster assumption assumes that
the examples of different classes form several well-separated
clusters, and the decision boundary falls into the low density area
in the feature space. Representative algorithms include Transduc-
tive Support Vector Machines (TSVM, [2]), Multiple Kernel TSVM
[3], concaVe Semi-supervised Support Vector Machine (VS3VM,
[4]), Structural Regularized Support Vector Machines (SRSVM, [5]),
and Safe Semi-supervised Support Vector Machines (S4VM, [6]), etc.
Methods above are the variants of traditional supervised Support
Vector Machines (SVM). The only differences are on the definition
of loss function, since the hinge loss employed by traditional SVM
cannot be directly applied to the semi-supervised settings.

Manifold assumption postulates that the geometry of data
distribution is usually supported by an underlying manifold

(e.g. Riemannian manifold). The manifold can be described by a
graph, of which the examples are represented by vertices and their
similarities are measured by weighted edges. Therefore, manifold
assumption requires that the labels should vary smoothly on the
graph. In other words, if two examples are connected by a strong
edge, they tend to share similar labels. Under this assumption,
many graph-based semi-supervised learning algorithms have been
developed. Zhu et al. proposed Harmonic Functions (HF, [7]) and
related it to random walks, electric networks, and spectral graph
theory. Zhou et al. developed Local and Global Consistency (LGC,
[8]), in which the smoothness of labels are defined by the
normalized graph Laplacian. Moreover, Spectral graph partitioning
[9] formulates SSL as a graph cut problem, which aims to find a
partitioning that minimizes the defined objective function. Wang
et al. proposed Linear Neighborhood Propagation (LNP, [10]) that
assumes that each data point in the graph can be optimally
reconstructed by its neighbors. By introducing the manifold
regularizer, Belkin et al. proposed the Laplacian Support Vector
Machines (LapSVM) and Laplacian Regularized Least Squares
(LapRLS). The idea of manifold regularization was successfully
adapted to multi-label classification by multiview vector-valued
manifold regularization (MV3MR, [11]) and manifold regularized
multitask learning (MRMTL, [12]) algorithms. Other typical mani-
fold assumption-based approaches include AnchorGraph [13],
Graph Transduction via Alternative Minimization (GTAM, [14]),
and Label Propagation through Sparse Neighborhood (LPSN, [15]),
etc. In recent years, some hypergraph-based manifold learning
algorithms were developed and adopted to solve the critical
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problems in computer vision, such as image classification [16–18]
and cartoon animation [19].

However, the graph established in the methods above only
contains nonnegative edge weights. That is, only the similarities
between examples are considered for classification, and the
dissimilarity information is ignored. However, we believe that
the dissimilarity information is important for improving the
discriminative ability of semi-supervised classifiers. Therefore, this
paper aims to design a novel semi-supervised classifier that
incorporates both similarity and dissimilarity constraints between
examples. In contrast to the traditional graph-based methods
which require edge weights to be nonnegative, the weights in
our algorithm are in the range ½�1;1�. The positive weights
representing “must-links” describe how similar the two connected
examples are, and the negative weights standing for “cannot-
links” evaluate the dissimilarity between the pairwise examples.

Actually, pairwise constraints including “must-links” and “cannot-
links” have been widely adopted by various constrained clustering
[20–22], dimensional reduction [23] and metric learning algorithms
[24,25]. However, they are seldom employed to solve the semi-
supervised classification problems. In this paper, pairwise constraints
are adopted in order to improve the performance of traditional
graph-based SSL algorithms, and the proposed classifier is named as
Constrained Semi-supervised Classifier (CSSC). The most relevant
work is [26], which also incorporates the dissimilarity into the
framework of manifold regularization. However, the negative edges
in this method should be manually generated among the unlabeled
examples, which is different from CSSC that automatically constructs
the graph of signed edges without any manual assistance.

The main contributions of this paper are summarized below:

1. A novel semi-supervised classification algorithm is proposed by
incorporating both similarity and dissimilarity constraints.

2. The graph is built via similarity/dissimilarity propagation, in
which the constraints imbalance is particularly considered.

3. A convex regularization framework is developed, so that the
obtained solution is globally optimal.

The remainder of this paper is organized as follows: Section 2
constructs the signed graph with positive and negative edge
weights. Section 3 derives the regularization framework of CSSC
based on the established graph. We prove the convexity of the
proposed model in Section 4, and present the empirical validations
of CSSC and other experimental results in Section 5. Finally, a
conclusion is drawn in Section 6.

2. Graph construction

For convenience, some important notations used in the rest
of the paper are listed in Table 1. Given l labeled examples

L¼ ðx1;Y1Þ; ðx2;Y2Þ;…; ðxl;YlÞgARd � RC and u unlabeled exam-
ples U ¼ fðxlþ1;Ylþ1Þ; ðxlþ2;Ylþ2Þ;…; ðxn;YnÞgARd � RC (n¼ lþu)
drawn from the same distribution, the task of SSL is to propagate

the labels fYigli ¼ 1AR1�C in L, to the unknown labels

fYiglþu
i ¼ lþ1AR1�C in U . Here C is the total number of classes. Then

the c0-th (1rc0rC) element of label vector fYigni ¼ 1 is defined as
ðYiÞc0 ¼ 1 if xi belongs to the c0-th class, and ðYiÞc0 ¼ 0 otherwise.
Consequently, a graph G¼ 〈V; E〉 can be built where V is the vertex
set composed of all the elements in L⋃U , and E is the edge set
describing the similarity/dissimilarity between pairs of examples.

Traditionally, there are two ways to compute the nonnegative
edge weight between two examples. One is the 0–1 weight, which
simply takes the binary value from f0;1g to indicate whether an
edge exists between the two vertices or not. The other is to use the
RBF kernel, which produces a real value within ½0;1�, to represent
the similarity of examples. However, these two methods only
generate nonnegative weights, so they are not suitable to repre-
sent both “must-link” and “cannot-link” constraints. Below we
introduce a two-step approach called “balanced constraints pro-
pagation” to explicitly construct a graph with edge weights in the
range of ½�1;1�.

In the first step, we establish a traditional unsigned graph ~G
with nonnegative edge weights. K nearest neighborhood (K-NN)
graph is adopted because sparse graph usually leads to better
performance [27]. The edge weights mij (1r i; jrn) of ~G are
computed by using the RBF kernel mij ¼ expð‖xi�xj‖2=ð2s2ÞÞ
(s is the kernel width), and thus we have the adjacency matrix
M of ~G with ðMÞij ¼mij. Moreover, we define a diagonal matrix ~D in

which the i-th diagonal element ~dii is calculated as ~dii ¼∑n
j ¼ 1mij.

Therefore, M can be further normalized by M ¼ ~D
�1=2

M ~D
�1=2

, so
that the elements mij of M satisfy ∑n

j ¼ 1mij ¼ 1 for 1r irn [8].
In the second step, we aim to build a signed graph G that

incorporates both positive and negative constraints based on M.
It is obvious that lðl�1Þ=2 definitely correct constraints are already
available based on the l labeled examples, and they are recorded
by the similarity set S and dissimilarity set D:

S ¼ fðxi; xjÞjxi and xj come from the same classg

D¼ fðxi; xjÞjxi and xj come from different classesg:

The aim of our proposal is to propagate the limited available
elements in S and D, to the remaining pairs of examples. This
process is called “balanced constraints propagation”.

To facilitate the mathematical manipulations, we use the

matrix W
_ ð0Þ

ARn�n to encode the pairwise constraints in S and
D, namely

ðW
_ ð0Þ

Þij ¼W
_ ð0Þ

ij ¼
1 ðxi; xjÞAS or i¼ j

�γ ðxi; xjÞAD
0 ðxi; xjÞ is not specified

8><
>: : ð1Þ

In (1), γ ¼ a=b where a¼ jSjþn, b¼ jDj and j � j represents the size

of a set. Note that we set ω
_ ð0Þ
ij ¼ �γ rather than �1 to avoid the

constraints imbalance. In fact, if jDj is very small, the element “1”

in W
_ ð0Þ

will be much more than the element “0” because all the
diagonal elements are 1s, thus the “must-links” may dominate the
propagation process, which significantly weakens the propagation
“strength” of the “cannot-links”. Alternatively, more negative

constraints can be added to W
_ ð0Þ

based on the prior knowledge,
so the negative constraints can significantly outnumber the
positive constraints sometimes. Therefore, γ assigns larger weight

Table 1
Important notations used in this paper.

Notation Description Notation Description

xi The ith example W
_ The adjacency matrix of G

Yi The label vector of xi W The matrix recording

the values of jðW
_

Þijj
K The number of

neighborhoods
S Indicator matrix

~G Unsigned graph I Identity matrix
G Signed graph F The obtained label matrix
M The adjacency matrix of ~G H Hessian matrix

M Normalized M ~L Generalized graph
Laplacian
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on the minority constraint between “must-link” and “cannot-link”
so that their “strengths” are comparable. This is the main differ-
ence between the proposed “balanced constraints propagation”
and the existing “similarity propagation” [24]. Liu et al. [24]
only propagates the positive edges, while our method transmits
both positive edges and negative edges in a balanced way. The
necessity of handling the imbalanced constrains is demonstrated
in Section 5.1.

Similar to [8] and [10], the propagation process can be simulated
by an iterative process. In the t-th iteration, the similarities between
the i-th example and other examples can be modeled as a convex
combination of two factors: one is its initial similarities with other

examples denoted by W
_ ð0Þ

i (W
_ ð0Þ

i means the i-th row of matrix W
_ ð0Þ

),
and the other is the influence of similarities of other examples in the
previous iteration. Therefore, we have

W
_ ðtÞ

i ¼ ð1�αÞW
_ ð0Þ

i þα ∑
n

j ¼ 1
mijW

_ ðt�1Þ
j ; ð2Þ

in which αAð0;1Þ is a parameter governing the relative weight

between W
_ ð0Þ

i and the weighted sum of W
_ ðt�1Þ

j (1r jrn). (2) can be
presented concisely by

W
_ ðtÞ

¼ ð1�αÞW
_ ð0Þ

þαMW
_ ðt�1Þ

: ð3Þ
Therefore, by iteratively using (3), we obtain

W
_ ðtÞ

ðαMÞtW
_ ð0Þ

þð1�αÞ ∑
t�1

i ¼ 0
ðαMÞiW

_ ð0Þ
: ð4Þ

Note that M is similar to the stochastic matrix Ω¼ ~D
�1

M¼
~D
�1=2

M ~D
1=2

, so all the eigenvalues of M are within ½�1;1� [8].
Consequently, from Perron–Frobenius theorem [28] we know that
when t-1, (4) will converge to

W
_

¼ ð1�αÞðI�αMÞ�1W
_ ð0Þ

: ð5Þ

W
_

is a symmetrical matrix in which the elements are in the range
½�1;1�. Therefore, it incorporates both similarity and dissimilarity
constraints. After zeroing out the entries smaller than ε and
implementing normalization (the normalization process is similar

to M in the first step), we finally obtain the adjacency matrix W
_

of
signed graph G.

3. Regularization framework

As mentioned in the Introduction, graph-based SSL requires the
labels of examples varying smoothly on the graph. This is usually
achieved through the regularization techniques, such as [8–10].
However, traditional regularization framework for the unsigned
graph is not applicable to the signed graph, so a novel smoothness
regularizer is to be developed.

To facilitate the following explanations, we use the nonnegative

WARn�n to store the absolute values of W
_

's elements, and use the
indicator matrix SARn�n to record the signs of the corresponding

elements inW
_

. That is, ðWÞij ¼ωij ¼ jω_
ij j (ω_

ij is the (i,j)-th element

of W
_

), and ðSÞij ¼ sij ¼ 1;0; �1 if ω_
ij is positive, zero and negative,

respectively. Besides, we stack the initial label vectors fYigni ¼ 1 into

a matrix Y¼ ðYT
1 ;Y

T
2;…;YT

nÞT ARn�C , and define the final label

matrix by F¼ ðFT1; FT2 ;…; FTnÞT in which fFigni ¼ 1AR1�n are final soft
label vectors with the elements taking values from a real range
½0;1�. Fi determines the class of xi as ci ¼ arg maxF ic0 .

If xi and xj are connected by a “must-link”, we have ωij ¼ω_
ij ,

and the smoothness regularizer is the same as the one utilized by
other existing methods [7,10], namely

Q1ðFÞ ¼
1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
ωij‖Fi�Fj‖2: ð6Þ

Eq. (6) suggests that if xi and xj are very similar, their labels Fi and
Fj should not differ significantly.

If xi and xj are connected by a “cannot-link”, then ωij ¼ �ω_
ij ,

and the smoothness regularizer is defined by

Q2ðFÞ ¼
1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
ωij‖1T �Fi�Fj‖2; ð7Þ

where 1¼ ð1;1;…;1ÞT ARC is a C-dimensional all-one vector.
Because all the entries in Fi and Fj are within ½0;1�, (7) indicates
that if xi and xj are very dissimilar, then their labels should be
completely different. For example, if the edge weight between xi

and xj is ω_
ij ¼ �1, these two examples definitely belong to

different classes. If xi's label vector Fi ¼ ð0:1;0:7Þ, the desirable
label of xj should be Fj ¼ ð0:9;0:3Þ.

By using the matrix S defined above, (6) and (7) can be cast into
a unified framework:

Q ðFÞ ¼ 1
2
∑
i
∑
j
ωij J

1
2
ð1�sijÞ � 1T þsijFi�Fj J2: ð8Þ

We observe that if the traditional unsigned graph is adopted (i.e.
sij ¼ 1 for 1r i; jrn), (8) will degenerate into the existing
smoothness regularizer [7], which has the same formation as (6).
However, (8) can also handle the negative weights, which is the
main innovation of this paper. By denoting ð1�sijÞ=2¼ pij in (8),
the complete regularization framework of CSSC is expressed as

min
F

HðFÞ ¼ 1
2

∑
i
∑
j
ωij‖pij � 1T þsijFi�Fj‖2þβ∑

i
‖Fi�Yi‖2

" #
; ð9Þ

in which the first term in the bracket is the proposed smoothness
term, and the second fitting term means that the classification
results should be well consistent with the examples’ initial states.
The regularization parameter βAð0;1Þ controls the trade-off
between smoothness term and fitting term.

By computing the derivative of HðFÞ with respect to F, and
enforcing the result to 0, we have

∂H
∂F

¼ 2 ~LFþv�EþβðF�YÞ ¼ 0: ð10Þ

In (10), EARn�C represents an all-one matrix, and vAR1�n is an n-
dimensional row vector with the i-th element represented by
vi ¼∑jðsij�1Þωijpij. v�E defines a matrix of the same size as E, of
which the i-th row is vi � Ei. ~L has the formation as

~L ¼

∑
j
ω1j �ω12s12 ⋯ �ω1ns1n

�ω21s21 ∑
j
ω2j ⋯ �ω2ns2n

⋮ ⋮ ⋱ ⋮
�ωn1sn1 �ωn2sn2 ⋯ ∑jωnj

0
BBBBBB@

1
CCCCCCA

¼ L � S; ð11Þ

in which L¼D�W (the definition of D is identical to ~D) is the
traditional graph Laplacian [29], and “�” is the Hadamard product.
Note that if S is an all-one matrix, ~L will degenerate into
the traditional graph Laplacian. Therefore, ~L can be regarded as the
generalized graph Laplacian that is also applicable to the signed graph.

The closed-form solution of (9) can be obtained by solving (10),
which is

F¼ ð2 ~LþβIÞ�1ðβY�v�EÞ: ð12Þ
IARn�n in (12) is an identity matrix. Because 2 ~LþβI is always
invertible, so (9) is guaranteed to have a meaningful solution. Note

C. Gong et al. / Neurocomputing 139 (2014) 130–137132



that the only computational burden for obtaining F in (12) is to
finding the inverse of 2 ~LþβI, which usually has a cubic time
complexity Oðn3Þ. However, this complexity can be decreased by
adopting some approximation techniques, e.g. Nystrom̈ approx-
imation [30].

4. Convexity analysis

It is worth pointing out that the regularization framework (9) of
CSSC is convex. By calculating the Hessian matrix H of (9), we have

H¼ 2 ~LþβI; ð13Þ
in which ~L is defined by (11). It is obvious that H is diagonally
dominant, so it is a positive definite matrix. Therefore, (9) defines a
convex optimization problem, and its solution F is guaranteed to be
globally optimal.

5. Experimental results

In this section, we validate the proposed CSSC on two synthetic
datasets, and compare CSSC with some state-of-the-art SSL algorithms
on a number of real-world computer vision collections. HF [7], LNP
[10], LapRLS [31], LapSVM [31], S4VMwith linear kernel [6] and S4VM
with RBF kernel [6] serve as the baselines for evaluating the per-
formance of CSSC. In all the experiments below, we choose β¼100,
α¼0.9 for CSSC, C1 ¼ 100, C2 ¼ 0:1 for S4VM, and γA ¼ γI ¼ 1 for
LapRLS and LapSVM. Other parameters in the compared algorithms
are also properly tuned to obtain the optimal performances.

5.1. Toy data

Two synthetic datasets, Ring&Triangular and DoubleMoon, are
adopted to visualize the results of graph construction and classi-
fication performance of CSSC. In Ring&Triangular, a triangular
representing the negative class is surrounded by a ring that forms
the positive class (see Fig. 1(a)). Both the outer ring and inner
triangular are centered at ð0;0Þ, and the radius of the ring is 2. The
difficulty of this dataset is that the intersection area between
triangular and ring may cause the mutual transmission of positive
and negative labels. DoubleMoon consists of 640 examples, which
are equally divided into two moons (see Fig. 1(b)). This dataset is
contaminated by the Gaussian noise with standard variance 0.15,
and each class has only one labeled example.

In these two datasets, the available negative constraints in D is

very sparse compared with the “1” elements in W
_ ð0Þ

, so the γ in (1)
plays an important role in handling the constraints imbalance. We
set K¼10, s¼2 in Ring&Triangular, and choose K¼5, s¼2 for
DoubleMoon. Fig. 1(c) and (e) respectively plot the established
graphs for Ring&Triangular and DoubleMoon, by simply setting

ω
_ ð0Þ
ij ¼ �1 when ðxi; xjÞAD. Fig. 1(d) and (f) is the results of

balanced constraints propagation by adopting the adaptive γ. It can
be observed that more “cannot-link” edges are generated by consider-
ing the constraints imbalance, which is very important to deal with
the ambiguous points in the intersection regions of different classes.

In Fig. 1(g), a fraction of negative labels are erroneously
propagated to the outer ring because the “cannot-link” edges are
not sufficient to prevent the negative labels being transmitted to
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Fig. 1. Performances of CSSC on Ring&Triangular and DoubleMoon datasets, in which the left part is Ring&Triangular and the right part is DoubleMoon. The first row [(a) and
(b)] illustrates the initial labeled and unlabeled examples. The second row [(c)–(f)] shows the constructed sighed graphs with and without considering the constraints
imbalance, in which the red lines are “must-links” and the green lines are “cannot-links”. The third row [(g)-(j)] presents the final classification results. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this article.)
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the positive class. As a result, CSSC is confused at the inter-
section region and fails to achieve the perfect classification.
Comparatively, a better result is obtained in Fig. 1(h), for the
reason that more negative edges are generated in the intersection
regions. Therefore, the effectiveness of the proposed method for
preventing the imbalanced constraints is validated. For DoubleR-
ing, perfect performances are achieved on both graphs (see Fig. 1
(i) and (j)), because the obtained negative weights in Fig. 1(e) are
sufficient to make a clear discrimination between the two classes.

Moreover, the experimental results in Fig. 1(g)–(j) reveal that
CSSC is able to successfully discover the geometric structure of the
data distribution. This is another rationale why the proposed
method can achieve encouraging performance.

5.2. Real benchmark data

In this section, we use three UCI datasets1 including Iris,Wine and
Seeds, and USPS dataset in Chapelle's book [32] to compare the
performances of CSSC and all the baselines. There are totally 150, 178,
210 and 1500 examples in the above four datasets, which are
attributed to 4 classes, 13 classes, 7 classes and 2 classes, respectively.
Particularly, USPS is a handwritten digit recognition collection which
contains 150 images (examples) of each of the ten digits. The digits
“2” and “5” form the positive class, and all the other digits constitute

Table 2
Classification accuracies (%) of algorithms on four benchmark datasets. (The reported results are of the format “accuracy7standard variation”.)

Iris Wine Seeds USPS

Algorithms l¼12 l¼24 l¼12 l¼24 l¼12 l¼24 l¼10 l¼100

HF 0.53270.179 0.83270.064 0.69370.174 0.81870.121 0.37170.063 0.41470.005 0.80270.005 0.81370.002
LNP 0.80770.110 0.85470.107 0.69870.060 0.68870.089 0.80370.081 0.84170.077 0.77670.058 0.79970.004
LapRLS 0.90370.001 0.93970.001 0.90370.001 0.93170.001 0.89270.001 0.89570.001 0.65770.002 0.77470.001
LapSVM 0.82470.001 0.89870.001 0.86170.001 0.89370.001 0.87070.001 0.89770.001 0.67370.002 0.87370.001
S4VM (RBF) 0.91370.022 0.91970.023 0.91270.041 0.92770.010 0.88170.041 0.88170.010 0.68570.066 0.74270.029
S4VM (linear) 0.75670.030 0.76070.053 0.93670.024 0.92370.037 0.83870.049 0.86170.031 0.67770.068 0.68870.036
CSSC 0.94570.029 0.95570.023 0.93370.016 0.94570.011 0.90470.013 0.90970.011 0.84470.050 0.95370.007
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Fig. 2. Experimental results on Caltech 256 dataset. (a) The performances of CSSC and baselines are compared. (b) The performances of the proposed method when different
numbers of extra constrains are incorporated are shown. (c) Some representative examples are shown.

1 http://archive.ics.uci.edu/ml/
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the negative class. Therefore, the sizes of examples are imbalanced
and the size ratio of two classes is 1:4. The feature of every digit
image is represented by a 241-dimensional vector with elements
representing the pixel-wise gray values.

In each dataset, we implement all the algorithms under
different l as listed in Table 2, and the reported results are
averaged over 20 independent implementations for a certain l.
For each implementation, the labeled sets are randomly chosen
from the entire dataset, and at least one example is guaranteed in
every class.

The RBF kernel width s is set to 1 in Iris, Wine and Seeds, and
optimally tuned to 5 in USPS. The parameter K in all the four
datasets is adjusted to 10, and we zero out the weak edges in W

_

with weights smaller than ε¼ 0:001. In Table 2, the best results are
marked in bold, which reveal that the proposed CSSC outperforms
other baselines overall. This is because CSSC utilizes not only
“must-links”, but also the “cannot-links” that are not incorporated
by the traditional SSL algorithms. Therefore, CSSC shows stronger
discriminative ability than other baselines. Moreover, we note that
CSSC achieves very impressive performance on the USPS dataset,
which demonstrates that CSSC can perfectly handle the data
imbalanced situations.

5.3. Image classification

Classifying objects under natural scenes is a challenging pro-
blem because of various viewing angles, complicated background
and unexpected noises. We extract a subset from the original
Caltech 256 dataset [33], to test the ability of CSSC and baselines on
classifying nine animals, i.e. dog, goose, swan, zebra, dolphin, duck,
goldfish, horse, and whale. Each animal has 80 images in our
subset, and a few typical examples are illustrated in Fig. 2(c). It is
shown that even two examples belonging to the same class may
look very differently, which demonstrates the challenges to the
accurate classification. Images are characterized by a concatena-
tion [34] of four image descriptors, including PHOG [35], SIFT
Descriptor [36], Region Covariance [37], and LBP [38]. The para-
meters for graph construction are K¼10 and s¼2. We zero out the
elements in W

_

of which the absolute values are smaller than
ε¼0.001. The accuracies of algorithms vs. different sizes of labeled
set are evaluated, and Fig. 2(a) shows the result. It is observed that
CSSC always achieves higher accuracy compared with the base-
lines with the best performance of 80% accuracy rate.

As discussed in Section 2, certain prior knowledge can be used
to further boost the classification performance of CSSC. To validate
this argument, we randomly add a number of extra pairwise
constraints according to the groundtruth. We use these manually
added constraints, along with the constraints in S and D, to carry
out the classifications on these four animals again. We gradually
add the extra constraints with q¼1000, 2000 and 3000 (q is the
amount of extra constraints), and the accuracy vs. the increasing

pairwise constraints is plotted in Fig. 2(b). It can be observed that
the accuracy can be improved significantly by incorporating more
constraints. Therefore, the effectiveness of integrating “must-link”
and “cannot-link” in CSSC is demonstrated.

5.4. Violent behavior detection

The proposed CSSC can also be applied to processing video data.
Detection of violent behaviors, such as fighting and robbery, is an
important application of intelligent surveillance. The HockeyFight
dataset contains 1000 video clips collected in ice hockey competitions,
of which 500 clips contain fight behavior and 500 clips are non-fight
sequences. Our purpose is to accurately identify the fighting clips.
Fig. 3 shows a few typical frames extracted from the fighting and non-
fighting clips. Similar to [39], we adopt the space–time interest points
(STIP) and motion SIFT (MoSIFT) as action descriptors, and use the
Bag-of-Words (BoW) approach to represent each video clip as a
histogram over 100 visual words. Therefore, every clip in the dataset
is characterized by a 100-dimensional feature vector.

For fair comparison, a 5-NN graph with s¼2 is built for all the
graph-based comparators to evaluate the relevant classification
performances. The accuracies of various algorithms under l¼40, 80,
120 and 160 are particularly observed, and all the algorithms are
implemented 20 times independently for each l. The accuracies and
standard variances are plotted in Fig. 4, which indicates that the
performances of all the compared methods can be substantially
improved by increasing l. Comparatively, S4VM with RBF kernel and
the proposed CSSC perform better than other methods. Particularly,
CSSC can achieve more than 85% accuracy when l is larger than 120,
which is a very encouraging result for fight behavior detection.

Non-fight:

Fight:

Fig. 3. Example frames containing fight and non-fight behaviors.
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Fig. 4. Performance comparison on fight behavior detection based on HockeyFight
dataset.
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Moreover, we observe that the standard variance of CSSC is not large
when changing l, so the performance of proposed CSSC is not
sensitive to the choice of initial labeled examples.

6. Conclusion

This paper proposed a graph-based SSL algorithm called Con-
strained Semi-supervised Classifier (CSSC). In CSSC, we established
a signed graph considering both similarity and dissimilarity
constraints between pairs of examples. Then a novel regularization
framework was developed to adapt the traditional smoothness
regularizer to the signed graph. A specific technique was devel-
oped to avoid the constraints imbalance, which significantly
improves the classification accuracy as revealed by comprehensive
empirical studies. Moreover, CSSC is demonstrated to be very
effective in dealing with several challenging computer vision
tasks, such as image classification and fight behavior detection.

A number of open issues remain. Firstly, current approach for
graph construction is computationally expensive, so it cannot
handle the huge datasets; secondly, the parameters s and K are
adjusted empirically, so a systematic way for choosing the optimal
parameters is to be investigated; and thirdly, CSSC will be
evaluated more broadly on more practical problems.
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