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ABSTRACT
Existing state-of-the-art fine-grained classification method-
s usually use separated networks for discriminative region
localization and feature learning/classification, and are thus
complicated to implement and optimize. In this paper, we
aim to provide a compact solution by deepening the collab-
oration between the region localization, feature learning and
classification modules during the learning process of fine-
grained classification. We thus propose a method that can
learn to simultaneously localize discriminative regions and
extract discriminative features by exploring the localization
ability of classification convolutional neural networks and
joint optimization of different modules. Our method, while
being built upon a single backbone network and trained with
only softmax losses, achieves state-of-the-art performance on
three benchmark fine-grained datasets, which proves that our
method is simple but effective for fine-grained classification.

Index Terms— Fine-grained classification, region pro-
posal, discriminative region localization, attention, convolu-
tional neural networks

1. INTRODUCTION

Fine-grained classification assigns subordinate categories to
objects that belong to the same basic-level category, e.g.,
species of birds and flowers, and models of aircraft and cars.
It is obviously a challenging task to fulfill fine-grained clas-
sification based purely on the appearance of objects because
of intrinsically small inter-class differences and potentially
large intra-class differences [1]. In the early days, researchers
turned to domain experts for prior knowledge of discrim-
inative features of objects in different subcategories, and
relied on manually annotated bounding boxes or object parts
[2, 3, 4]. However, acquiring human annotations is expen-
sive, and expert-defined discriminative features might not be
optimal for auto-classification by computers.

Recent methods [1, 5, 6, 7, 8, 9, 10, 11, 12] attempt to
automatically find discriminative regions in objects and learn
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effective feature representations without the need of bound-
ing box/part annotations. Some of them [5] treat images as
a whole and directly learn discriminative texture features for
fine-grained classification. Others [1, 6, 7, 10, 12] first de-
tect discriminative regions in objects and then extract features
from the regions to distinguish objects in different subcate-
gories. With assistance of local attention mechanisms, these
latter approaches achieve state-of-the-art performance. Yet,
they usually require separated sub-networks for generating
proposals of discriminative regions and for extracting features
and classification. To train the networks, they often have to
use specially designed losses. As a result, these methods are
mostly complicated to implement and hard to be optimized.

The goal of this paper is to provide a compact approach
that can simultaneously detect discriminative regions and
extract features for recognizing objects in different subcate-
gories. Our approach is motivated by the work in [13], which
shows that convolutional neural networks (CNNs) trained
with image-level labels have the ability to localize discrimi-
native image regions. Based on a backbone network for fine-
grained classification, we utilize its extracted feature maps
to generate candidate discriminative regions, and zoom in on
these regions to further extract local discriminative features.
Unlike existing methods, our proposed method, while being
implemented with a single network and trained by merely
softmax losses, can learn to focus on discriminative image
regions and meanwhile improve the effectiveness of extracted
features in distinguishing objects of different subcategories.
Evaluation results on three benchmark databases prove that
the proposed method is simple but effective for fine-grained
classification.

The rest of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 introduces our method
in detail. Section 4 presents and analyses the experimental
results, followed by conclusions in Section 5.

2. RELATED WORK

How to localize and represent discriminative regions in im-
ages has for a long time been a central issue in fine-grained
classification. Many efforts have been made in the past five
years to solve this problem. In early methods [1], discrimina-
tive region localization and fine-grained feature extraction are
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Fig. 1. The overall framework of our method. The input image I is fed into the fully-convolutional feature extractor to generate
feature maps Z, which are converted to the condensed image-level feature F I by global average pooling (GAP). The image-
level classification module (shown in yellow color) then produces classification scores from F I via a fully-connected (FC) layer
and softmax. Based on the image-level feature maps Z and FC weights W , an attention map M is generated from which m
regions of top discriminativeness are proposed and cropped from the input image. Region-level features {FR

1 , · · · , FR
m} are

then extracted from the zoomed-in versions of these local regions and classified by the region-level classification module (show
in orange color). The final classification result is obtained based on the hybrid feature F that is a concatenation of image-level
feature and top-l region-level features, and by using the hybrid classification module (shown in green color).

usually separately implemented. Observing the close correla-
tion between region detection and feature learning, Fu et al.
[9] and Zheng et al. [10] propose to jointly optimize the atten-
tion proposal networks (APN), which aim to detect discrim-
inative local regions, and the classification networks (CN),
which aim to learn feature representations and recognize the
fine-grained categories of objects. In their methods, APN and
CN partially overlap by sharing their feature extraction mod-
ules and are trained under multiple supervisions, which en-
able the mutual boost of region localization and feature learn-
ing. Recently, Yang et al. [12] further develop these methods
by proposing a more elaborate training paradigm with spe-
cially designed navigation losses. Despite the non-negligible
improvement achieved by them, the implementation of their
method is inevitably complicated.

Revisiting these existing state-of-the-art fine-grained clas-
sification methods, we see on the one hand the importance of
integrating region localization and feature learning and cate-
gorization. On the other hand, we also observe that existing
methods share only feature extractors between the modules
of region localization and classification. Being inspired by
the localization ability of classification CNNs [13], we pro-
pose in this paper a deeper collaboration between region lo-
calization and classification modules by sharing both feature
representation and classification layers. This way, not only
does the overall fine-grained classification network become
simple, but also more discriminative local regions and feature

representations can be obtained and thus higher classification
accuracy as well. It is worth mentioning that the authors of
[13] apply their method to fine-grained classification, but on-
ly for selecting one local region without joint learning with
feature extraction and classification.

3. OUR APPROACH

3.1. Overview

Figure 1 shows the overall framework of our proposed
method. Given an input image I , a set of n feature maps
{Zi ∈ Rh×w|i = 1, 2, · · · , n} are extracted from it via a
feature extractor consisting of a number of convolutional lay-
ers. Global average pooling (GAP) is then applied to these
feature maps, resulting in a condensed image-level feature
representation F I ∈ R1×n. This feature is fed into a fully
connected layer, which maps the feature to scores measuring
the probabilities of the input image belonging to different
fine-grained classes as follows,

Sk =

n∑
i=1

WkiF
I
i , k = 1, 2, · · · , C. (1)

Here, C is the total number of fine-grained classes, and
Wk ∈ R1×n denote the stacked weights associated with the
kth class. According to these scores, image-level fine-grained
classification result is obtained via softmax.



Meanwhile, based on the classification weights W and
the feature maps Z, an attention map M ∈ Rh×w is gener-
ated, which indicates the discriminativeness of local regions
with respect to fine-grained classification. According to M ,
m regions of top discriminativeness are localized on the input
image. These regions are cropped and resized to higher reso-
lution. All of them then go through the same feature extrac-
tion process as in the image-level, resulting in m condensed
region-level features {FR

r ∈ R1×n|r = 1, 2, · · · ,m}. From
each of these region-level features, region-level fine-grained
classification results are obtained. Moreover, top-l region-
level features are concatenated with the image-level feature,
leading to a hybrid feature F = [F IFR

1 · · ·FR
l ], from which

the final fine-grained classification result is obtained via soft-
max. Note that in real-world deployment, image-level and
region-level softmax classification are used during training
only.

3.2. Discriminative Region Localization

Next, we introduce in detail how the attention map is gen-
erated based on the extracted features and the classification
weights, and how the discriminative local regions are deter-
mined. Given the image-level feature maps Z ∈ Rh×w×n

and the image-level classification weights W ∈ RC×n, the
attention map is defined by

M = max{Mk =

n∑
i=1

WkiZi ∈ Rh×w|k = 1, 2, · · · , C},

(2)
where ‘max’ is element-wise max pooling across the C class
activation maps (i.e., Mk, which reveals the importance of d-
ifferent local regions on the input images for the recognition
of specific object classes [13]). Instead of using single class
activation maps (i.e., the one of the ground truth class dur-
ing training, or the one of the predicted class during testing)
as in [13], we max-pool all the class activation maps. This
is because we believe that once the image-level classification
module predicts wrong class labels, the attention map would
be misleading due to the only use of unreliable class activa-
tion map of the wrongly predicted class. To further increase
the robustness of M to noise, we apply Gaussian smoothing
to the attention map. By integrating the class activation map-
s, our attention map considers both the representativeness of
local regions for specific classes and the separability between
different classes.

To obtain multiple discriminative regions, we produce a
series of pre-defined regions from the attentiona map M in-
spired by the idea of region proposal network in [14]. Specif-
ically, each pixel in M corresponds to a region in the input
image I , and the pixel value measures the discriminativeness
of the corresponding region. We sort the regions according to
their discriminativeness and adopt non-maximum suppression
(NMS) to reduce redundancy. Then we select top-m discrim-

inative regions, crop them from the input image and zoom in
on them to increase their resolution such that finer detail can
be extracted.

3.3. Training Paradigm

We now introduce how the proposed method is trained. Note
that the feature extractor modules are shared between image
level and region level, and the classification modules (i.e., the
fully connected layers) for different local regions are identi-
cal. Therefore, the trainable parameters in our method are
owed to the feature extractor module, and the fully connect-
ed (FC) layers in the image-level classification module, the
region-level classification module and the hybrid classifica-
tion module. To learn these parameters, we apply softmax
losses for all the classification modules involved in our pro-
posed network, and train the entire network in an end-to-end
manner. Note that in our method the learning of discrimi-
native region detection, feature representation, and classifica-
tion is interleaving, and more importantly, is implemented in
a more deeply collaborative way by sharing more parameter-
s. This greatly contributes to the superior performance of our
proposed method, as being demonstrated by our experimental
results that are reported in the next section.

4. EXPERIMENTS

4.1. Datasets and Baselines

We evaluate our proposed method on three benchmark
datasets, CUB-200-2011 [15], FGVC Aircraft [16] and the
Stanford Cars [17]. These datasets are widely used in the
fine-grained image classification literature. CUB-200-2011
contains 200 species of birds with 5, 994 images for training
and 5, 794 images for testing. This dataset is considered one
of the most competitive datasets for fine-grained classifica-
tion due to the limited number of images of each species.
FGVC Aircraft contains 100 classes of aircraft models with
6, 667 images for training and 3, 333 images for testing. The
Stanford Cars dataset includes 196 car models with 8, 144
images for training and 8, 041 images for testing.

We compare our proposed method against the following
baseline methods, the Bilinear-CNN [5], RA-CNN [9], The
ResNet-50 implemented in [18], Boost-CNN [19], MA-CNN
[10], PartNet-Full [11] and NTS-Net[12], all of which do not
depend on bounding box/part annotations. For a fair compar-
ison, the accuracy of these methods, if available, is directly
cited from their source papers.

4.2. Implementation Details

In our experiments, we adopt the ResNet-50 model in [20]
as the backbone network (i.e., the feature extractor module),
which has been pre-trained on ILSVRC2012 [21]. The input



images, the localized discriminative regions, and the zoomed-
in local regions, respectively, have resolution of 448 × 448,
160 × 160, and 224 × 224 pixels. The NMS threshold is
set to 0.25. For a fair comparison, the hyper parameters m
and l are set according to NTS-Net [12], i.e., m = 6 and
l = 4. Stochastic Gradient Descent is employed to optimize
our model with weight decay of 5e − 4 and momentum of
0.9. The training process continues for 100 epochs with the
base learning rate initialized at 0.01 and multiplied by 0.1
after every 40 epochs. Note that the learning rate for the pre-
trained layers in the feature extractor module is 0.1 times the
base learning rate.

Fig. 2. Four discriminative regions localized by our proposed
method on images of birds, aircraft and cars. Top-1 to top-4
regions are shown in red, gree, blue and yellow, respectively.

4.3. Results

The classification accuracy of our method and the counter-
part methods on CUB-200-2011 is presented in Table 1, from
which we can see that our method achieves the highest accu-
racy. Note that our method outperforms the method in [18],
which is also based on ResNet-50, by 3.1%. We believe that
this improvement owes to the more effective learning abili-
ty of our method for both discriminative region detection and
feature extraction and classification.

Table 1 also shows the results on FGVC Aircraft and S-
tanford Cars. As can be seen, our method overwhelms the
existing top method, NTS-Net, by a clear margin of (0.7%)
and establishes a new state-of-the-art result on FGVC Air-
craft. Similarly, the accuracy of our method on Stanford Cars
(94.1%) is also the best one, compared with the counterpart
methods. These results demonstrate the superiority of our
proposed method in learning effective feature representations
for fine-grained classification. Figure 2 visualizes the top-4
local regions detected by our method on some example im-
ages. Obviously, the selected regions appear to coincide with
our human beings’ perception of these objects (e.g., focus on
head and wing of birds, headlight and logo of cars, and head
and wing of aircraft).

To further assess the contribution of different components

Method Accuracy (%) on
Birds Aircraft Cars

Bilinear-CNN [5] 84.1 84.1 91.3
ResNet-50 [18] 84.5 - -
RA-CNN [9] 85.3 88.2 92.5

Boost-CNN [19] 85.6 88.5 92.1
MA-CNN [10] 86.5 89.9 92.8

PartNet-Full [11] 87.3 - -
NTS-Net [12] 87.5 91.4 93.9

Ours 87.6 92.1 94.1

Table 1. Classification accuracy on CUB-200-2011 (Birds),
FGVC Aircraft (Aircraft) and Standord Cars (Cars).

in our method, we conduct ablation study on CUB-200-2011
with different settings. First, we remove the hybrid classifi-
cation module during training and use the image-level clas-
sification module during testing to predict the fine-grained
classes. According to the results in Table 2, in this case our
method achieves an accuracy of 86.7%, which outperforms
the ResNet-50 [18] by 2.2% and even outperforms the image-
level NTS-Net [12] by 1.4%. Yet, after including the hybrid
classification module, the accuracy of our method is further
improved to 87.6%.

Second, following the method in [13], we use single class
activation maps, rather than max-pooling all the class acti-
vation maps, to generate the attention map. Consequently,
the accuracy of our method drops from 87.6% to 87.3%,
which proves the importance of considering the classification
weights of all classes.

Method Accuracy (%)
Res-Net50 [18] 84.5

NTS-Net (image level only) [12] 85.3
Ours (image level only) 86.7

Ours (without max-pooling) 87.3
Ours (hybrid + max-pooling) 87.6

Table 2. Ablation study results on CUB-200-2011.

5. CONCLUSIONS

In this paper, we propose a method for fine-grained classifica-
tion, which can learn to focus on discriminative local regions
and extract more feature representations in a more effective
way. Its key idea is to deepen the collaboration between the
region localization, feature learning and classification mod-
ules in fine-grained classification networks. Evaluation ex-
periments on three benchmark databases demonstrate that the
proposed method is simply but effective, and establishes new
state-of-the-art accuracy compared with existing methods.
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