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Inverse Nonnegative Local Coordinate Factorization
for Visual Tracking

Fanghui Liu, Tao Zhou, Chen Gong, Keren Fu, Li Bai, and Jie Yang

Abstract—Recently, nonnegative matrix factorization (NMF)
with part based representation has been widely used for ap-
pearance modelling in visual tracking. Unfortunately, not all the
targets can be successfully decomposed as “parts” unless some
rigorous conditions are satisfied. To avoid this problem, this paper
introduces NMF’s variants into the visual tracking framework
in the view of data clustering for appearance modelling. Firstly,
an initial target appearance model based on NMF is proposed to
describe the target’s appearance with the incorporated local co-
ordinate factorization constraint, orthogonality of the bases, and
L1,1 norm regularized sparse residual error constraint. Secondly,
an inverse NMF model is proposed, in which each learned base
vector is regarded as a clustering center in a low-dimensional
subspace. Potential target samples (from the foreground) will be
clustered around base vectors; while the candidate samples (from
the background) are very likely to spread irregularly over the
entire clustering space. Such difference can be fully exploited by
the inverse NMF model to produce more discriminative encoding
vectors than the conventional NMF method. Further, incremen-
tal updating model is introduced into the tracking framework
for online updating the initial appearance model. Experiments
on Object Tracking Benchmark (OTB) suggest that our track-
er is able to achieve promising performance when compared
to some state-of-the-art methods in deformation, occlusion, and
other challenging situations.

Index Terms—Ilocal coordinate constraint, inverse nonnegative
matrix factorization, incremental update, visual tracking

I. INTRODUCTION

ISUAL tracking is one of the most enduring topics in
computer vision with a wide range of applications, such
as video surveillance, autonomous driving, and robotic navi-
gation [1], [2]]. Although much progress has been made in the
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Fig. 1. The learned bases by NMF on (a) CBCL and (b) ORL dataset. A face
in (a) CBCL dataset can be successfully decomposed by the learned bases
with part-based representation (e.g. nose, eye, mouth, etc.). However, NMF
cannot learn these “parts” to represent a face in (b) ORL dataset.

past decades [3], [4], [S], visual tracking still cannot meet the
requirements of practical applications due to some challenging
factors such as occlusions, shape deformation, etc.

One essential aspect of visual tracking is appearance mod-
elling. According to the adopted appearance model, current
modelling methods are either generative [6]], [7] or discrimi-
native [8]], [9]. Generative methods aim to find the most similar
candidate to the target by minimizing the reconstruction error,
whilst discriminative methods cast the tracking problem as a
supervised/semi-supervised classification problem [L1], [12],
[13] to separate the foreground target from the background.

As a representative modelling method, nonnegative matrix
factorization (NMF) and its variants have been successfully
applied to visual tracking [14], [[1S], [[16]. NMF decomposes
the nonnegative data matrix X into the multiplication of two
nonnegative matrices U and V (X ~ UV), where U is called
base matrix and the columns of V are coefficient vectors. Here
each column of the data matrix X can be represented by a lin-
ear combination of base vectors (i.e. the columns of the base
matrix U). Due to the nonnegative constraints on U and V,
NMF learns a part-based representation for visual tracking, in
which the target can be spatially represented by “parts” (base
vectors) to enhance the representation ability in appearance
modelling. However, Donoho et al. [17]] point out that not
all the data can be successfully identified as “parts”. Such
decomposition requires additional conditions such as separat-
ed support and factorial sampling, which are not satisfied in
many practical situations. Some example images from [18]]
are shown in Fig. [I| We can see that NMF successfully learns
part-based representation on the CBCL face dataset but fails
on the ORL face dataset.

Besides, considering that the representation ability of the
traditional NMF methods is limited to linear factorization,
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Fig. 2. Samples spread among 16 base vectors by NMF’s variant from a per-
spective of data clustering where these base vectors are regarded as clustering
centers in a subspace. The target samples are clustered around base vectors,
while background samples spread among the space.

some regularization terms have been incorporated to enhance
the representation ability. Graph regularization [19] is incor-
porated into the conventional NMF, termed GNMF [20]. Guan
et al. [18] utilize two different classes of adjacent graphs for
the data matrix to enhance GNMF’s discriminative ability. The
sparsity term (i.e. group sparsity [21], or ¢ 1 term [22]) is added
to the objective function to exploit the data structure. Specif-
ically, to simultaneously take similarity and sparsity into ac-
count, Chen et al. [23]] introduce a local coordinate constraint
into the standard NMF that is termed Nonnegative Local Co-
ordinate Factorization (NLCF).

Based on the above discussion, we argue that part-based
representation in NMF is not suitable for visual tracking, and
attempt to illustrate it from the clustering viewpoint [24], [25]].
Therein, base vectors understood as the centroids of clusters
in U represent latent semantic information of the original data
in a subspace. In visual tracking, these base vectors can be re-
garded as data (the target) cluster centroids from different cues
in a low-dimensional space. Fig. ] demonstrates that positive
candidates sampled around the potential target are similar to
the base vectors, so they are located around the base vectors. In
contrast, the negative candidates corresponding to background
regions may spread among the clustering space. Therefore,
this difference between positive and negative candidates for
clustering can be effectively exploited to separate the target
from the background. The main contributions of this paper
are as follows:

1) NLCEF is introduced to appearance modelling for visual
tracking. Some additional constraints (the base orthog-
onality and the L;; norm regularization) are imposed
on U and error matrix E, respectively, which helps to
obtain a robust appearance model.

2) An inverse NMF representation that is called inverse
NLCF (inv-NLCF) is proposed to produce discriminative
feature vectors, leading to strong discriminative ability
between the target and the background.

3) An incremental learning scheme is proposed for online
updating the target appearance.

This paper is the extended version of our previous work

[26]. The tracker described here differs from [26] in sever-
al aspects. Firstly, we introduce local coordinate constraint,
orthogonality constraint and sparse error term in the appear-
ance model, and then the corresponding algorithm is designed
solve such problem. Second, the accelerated proximal gradi-
ent (APG) [27] in the inverse NLCF model is replaced by
the multiplicative updating rule for the optimization problem.
Thirdly, we design an incremental update rules for the appear-
ance model. Lastly, we provide more experimental results on
Object Tracking Benchmark (OTB) dataset, and also present
parameter analysis, and computational complexity analysis.

II. RELATED WORKS

Since most NMF based trackers belong to generative meth-
ods, here we will mainly review some representative gener-
ative trackers including sparse representation based trackers
and subspace learning based methods.

1) Sparse representation based trackers: Sparse representa-
tion has been introduced into visual tracking with demonstrat-
ed success [28], [29]]. The fundamental assumption is that a
candidate can be represented by a sparse linear representation
of target templates, where the coefficients can be solved via
a constrained ¢; minimization problem. Wang et al. [6] pro-
pose an online robust nonnegative dictionary learning algorith-
m based on ¢; tracker [30] for updating the object appearance.
Subsequently, local sparse representation [31]] and structured
sparse representation [28] are introduced into visual tracking
framework. In [32], the dual group structures of both candi-
date samples and dictionary templates are formulated as the
sparse representation problem at group level. Besides, reverse
sparse representation formulation [33]] is proposed to seek for
discriminative weight for each candidate sample.

2) Subspace learning based trackers: Generative trackers
commonly use subspace learning (eg. PCA, NMF, tensor) for
appearance modelling. The assumption is that the target lies
in a low-dimensional space. The incremental PCA subspace
representation [34]] is adopted to learn and update the target
appearance in visual tracking. The assumptions of sparse error
and trivial templates are used in [35] to reduce the sensitivity
to partial occlusion and also enhance the robustness of the
appearance model. In [36]], multiple linear and nonlinear sub-
spaces are learned to better model the nonlinear relationship
of different appearances conveyed by single object.

Some representative NMF based works include the Orthog-
onal Projective Nonnegative Matrix Factorization (OPNMF)
[15], Constrained Incremental Nonnegative Matrix Factoriza-
tion (CINMF) [37]], and Constraint Online Nonnegative Matrix
Factorization (CONMF) with sparsity constraint and smooth
constraint [14]. These generative methods, employ NMF with
different constraints (e.g. sparsity constraint, graph-based reg-
ularization) for appearance modelling. Different from above
three generative methods, in [16]], NMF serves as a method
for feature extraction. After solving the nonnegative encoding
vectors v; based on U, a Naive Bayes classifier is trained to
distinguish the target from the background.
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Fig. 3. Flowchart of the proposed tracker.
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III. THE NEW APPEARANCE MODEL AND ITS
INCREMENTAL UPDATE

The flowchart of the proposed tracking method is shown in
Fig. 3] It contains three main models: the initial appearance
model, the inverse NLCF model, and the incremental updating
model. The details are explained as follows.

A simple tracker (e.g. IVT [34]) is used to initialize the
tracking process at the first m frames to collect a certain
amount of target patches represented in graysacle values. Each
image patch is normalized to 32 x 32 pixels and then stacked
to a vector in our tracker. The patch near the tracking result
is sampled as a positive template T; € RM (M = 1024);
while the patch far away from the tracked target is taken
as a negative template T! € RM. This forms the posi-
tive template set Tpos = [T}, T2,--- , TY] € RM*N (or
called the initial data matrix X), and the negative template
set Tpeg = [TL, T2, ,T0] € RM*" constituting the back-
ground, where N and r are the number of positive templates
and negative templates, respectively. The positive template
set T, is decomposed into the base matrix U € RM*K
and coefficient matrix V. € RE*Y by using NMF variants
in the initial appearance model, where K is the number of
base vectors. After the mth frame, S new candidate patches
are sampled via the particle filter framework [38]], forming
Yis = {y1,y2,-,ys} € RMXS where each particle y;
denotes a candidate sample.

The proposed inv-NLCF model is regarded as a feature
coder, which encodes base matrix U by positive templates
T,.s and negative templates T, respectively. The corre-
sponding encoding vectors in Cp,s and C,,4 are then fed into
SVM classifier for training. Each row of C corresponding to
a candidate forms an encoding vector, which is classified as
target (positive) or background (negative) by SVM classifier.
The tracking result is delivered to our incremental updating
model every ten frames to dynamically update the base ma-
trix U, the newly coefficient vector in V, and the latest error
vector in E for appearance model.

The initial appearance model is based on the traditional N-
MF with two additional constraints. In the following subsec-
tions, we mainly introduce the initial appearance model and
its incremental updating model.

A. The Conventional NMF and its Variants: A Review

Some conventional NMF methods are briefly summarized
here for the ease of explanations for the proposed new method.

NLCF method incorporates a coordinate coding constraint [39]
into the conventional NME, namely'

1/2
0= Zuzvmnuk xlnruZn 1 T=U)A IR, ()

where U = [ul,ug,...,uK] € RMxK v =
[Vi,va,...vik] € REXN A, ¢ REXK jg a diagonal
matrix with the jth diagonal element defined by v;;, and p
is the regularization parameter. The notation 1 € R¥ denotes
the all-one vector. The columns of the base matrix U can
be considered as a set of anchor points, and thus each data
point in the original space can be linearly represented by
only a few anchor points [23]. Therefore, minimizing Eq.
requires that the new coordinate of x; regarding uy to be one
if x; is sufficiently close to the anchor point uy.

Besides, to discover the intrinsic geometrical structure in a
manifold space, graph based regularizer is incorporated into
NLCF’s objective function, that is:

N
O = | X-UV[Z+Mr(VIV )+ [[(x; 1T~ U)A?| 2,

i=1
2
where A is graph-based regularization parameter. The graph
Laplacian matrix is L = D — W, where D is a diagonal
matrix with Dy; = 5 j W;; and W is the weight matrix:
I 112
W= € 7 if x; €NR(x;) or X € Ni(x;); 3)
1] —
0 otherwise.

In Eq. (B), Ny (x;) denotes the k nearest neighbors of x;, and
o is the kernel width to be tuned. By such two regulariza-
tion terms, NLCF not only considers the similarity between
a data point and the learned base vector, but also maximally
guarantees the sparsity.

B. The Initial Appearance Model

Based on NLCF, two additional measures including base
orthogonality constraint and L; ; norm regularization are used
to improve data representation ability in the appearance model.

1) Constraints: Rather than using the ¢y orthogonal con-
straint UUT = I, we use another form described in [42]:

Zu u; =
_i#E]

where I signifies the matrix whose elements are all one. The
derivation details are presented in Appendix. [A] Minimizing
Eq. @) aims to enforce the inner product of two base vectors
< uw,u; >= u/u;(i # j) to be as small as possible in
different positions. Compared to the conventional orthogonal
constraint UUT = I, we do not need to guarantee that the
base matrix is orthogonal.

In addition, the residual error | X — UV||2 plays an im-
portant role in appearance modelling. In IVT [34], the error
is assumed to obey Gaussian distribution with zero mean and
small variance. In [35], the error is regarded as sparse noise.
We form this residual error as an error matrix E incorporated
into our objective function. To measure the sparsity of the
error matrix E in appearance model, we introduce the mixed
norm L, 4 [43] defined by:

tr(UOU ), o=1I-1, 4)
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4y %
IEllpq = {Z (Z |Eij\”) } : 5)
J K3

In our model, we use ||E||1,1 = >_, >, [Ej;| to obtain a sparse
error matrix. Compared to the ¢; norm, the L; ; norm imposes
column-wise (or row-wise) £1 norm. By incorporating above
two regularization terms in Eqgs. @), (3), the new objective
function is:

O(U,V,E)=|X-UV —E| 24+ tr(VLV") + 5| |E|| 1.1

N
6
+uy ||(xif—U)A,}/2||§+ytr(U0UT) , ©
=1

where ~ and [ are corresponding regularization parameters.
Note that Eq. (6) is not convex in both U, V and E, but is
convex with respect to each of these three variables. Therefore,
the optimal solution can be obtained by iteratively updating
one variable with the other two fixed.

2) Iteration Rules: The updating rules here are similar to
those in the conventional NMF updating rules in [44]. Given
the optimal solution of E, denoted as E,,;, the updating rules
for U and V are: ~
(h+ DXV )k

t+1 t,

Uik Tk GVVT + uUH + 10O, -
2 DUTX + A\VW),,; ’

Ultcjl (_Uzi ((UJF ) + )k,

“(2UTUV + 4G + uF + 2AVD)y,

where X = X — E.p¢, and H is the diagonal matrix, entries
of which are row sums of V. The matrix G is defined as
G=(gg.. g €REXN where g = diag(XTX) € RV,
Likewise, F = (f,f,...,f) € RE*N with the definition of
f = diag(UTU) € RX. The detailed derivations for iteration
rules are given in Appendix. B} After several iterations, U and
V will jointly converge to a stationary point (Ugps, Vopt)-
When U,,; and V,,,; are obtained, Eq. (6) degenerates to:

OE) = |X —E|} + B|El11, (8)

where X = X - U,pt Vopt. The optimal problem is equivalent
to O(E) £ 1| X ~E|Z+Z|E|1,1. Therefore E,,; is obtained
by the soft-threshold operator Sy [45]]:

. R R B

Eqp = S% (X) = sign(&;;) - max(0, |Z;;] — 5) .9
The entire optimization is summarized in Algorithm [1} in
which the base matrix U determines the data representation

ability.

C. Incremental Learning Model

The traditional updating rules are used in many application-
s such as document analysis [46] and face recognition [20].
However, it is not applicable to visual tracking because of
the unaffordable computational and storage costs. An incre-
mental updating scheme is therefore proposed based on [47],
[48]. The assumption behind the incremental NMF (INMF)
is that the previous coefficient matrix V has no effect on the
incremental process when a new sample x is added, name-
ly: [X,x] = U x [V, v]. In our method, we propose another
assumption that the previous error matrix E does not change
during the incremental process except when a new sample
arrives, namely: x = Uv + e. In other words, incremental

Algorithm 1: Algorithm for the initial appearance model.

Input: data matrix X € RM*N 1 < K < min{M, N},
related regularization parameters: A, u, v and 3
Output: base matrix U € RM*X | coefficient matrix
V € REXN and error matrix E € RM*N
1 Set: stopping error €.
2 Construct the weight matrix W by using Eq. and the
Laplacian matrix L =D — W.
3 Initialize ¢ = 0, U, V and E with random positive values.
4 Repeat
5 | Update Ut and Vi*! by Eq. (7);
6 | Update E‘*! by Eq. (O);
7

1:=1+1;
i+1 7
s Until IV _—Ulle €;
(SR =

updating scheme can be used for v and e, whilst U needs to
be recalculated entirely.

In the incremental updating model, X:11 = [X¢, %],
Vt+1 = [Vt,V], Et+1 = [Et,e}, where Ut+1, Wt+1, and
Dy, are the corresponding matrices when the (¢ 4 1)-th sam-
ple arrives. Therefore, the corresponding objective function
O:11(Ug41, v, €) is rewritten as:

Ori1=1Xe31 - U1 Vi1 — Bepallp + Bl Eesll1
+ Mr(Vip1 L V5 ) + (U1 OU )

i 2 (10)
> H (1" = Uspa) Aiﬂ”xz
=1

1) Incremental Updating Rules for Uiy: Given Eiy4 and
Vi1, Xir1 = Xep1 — Eiqq, Eq is equivalent to the
following formulation:

Or1(Uig) = || X1 — UV |’12:+7tr(Ut+l ou),)
41 )
D) [CHUS ARV I8
i=1

Let ¥ = [t,,] be a Lagrange multiplier for the nonnega-
tive constraint on U, 1, then the related Lagrange function is
LU, = Ot41(Ugq1) +tr(¥Uy 1 ). The partial derivative of
Ly with respect to U, is therefore computed as:

(1)

oL S
Y__o (Xi11 = U1 Vi) V;_l + v
Uy
t+1 (12)
+’}/Ut+1 (O + OT) + MZ (—QXilTAi—f—QU,H_lAi) .
i=1

By using the Karush-Kuhn-Tucker (KKT) condition, X4 =
[X¢,x] and Vi1 = [V, V], the updating rule for Uz is
formulated as Eq. (3), where v; = 1.

2) Incremental Updating Rules for v: It is nontrivial to
update v involved with A;. After the factorization operation
on ||-||r and V, and also omitting some irrelevant terms (more
details are provided in Appendix. [C), Eq. can be trans-
formed to:

Or1(v) =X =Up1v]34+2Xv" Vi(Lig1)i 1 +px x1Tv
+ AV Vilena — quTU;l)’c + udeiag(UtT_HUH_l) .
(15)
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[(p + 1)(XtVtT + XVT)]pq

(Ut+1)pq <~ (Ut+1)pq :

[(+ DU % — 1 Tx + AV(Wig1): i1 + AVWendl;

(U1 ViV + U vy’ + pU 1 Hy + Uy diag(v) + 71U 1 (0 + 07T

13)

Uj(*’()j'

where X = x —e, (L41). 441 represents the (t+ 1)th column
of the Laplacian matrix L, and lcpg = (Lyy1)s+1,4+1 denotes
the element of L in the last row and last column. Let ¢; be a
Lagrange multiplier for the nonnegative constraint on v, then
the relevant Lagrange function is £y = Opy1(v) + Tr(év).
Hence the partial derivative of £, with respect to v is:
aaﬁvv =—2(u+ 1)U x + plx x + 20 Upiv + ¢
+2)\Vf (Lt+1):7t+1+2AVTthend + ,udiag(UtT_‘_lUH_l) .
By using the KKT condition, the updating rule for v is for-
mulated in Eq. (T4), where y; = Sp.

3) Incremental Updating Rules for e: Given U;;; and v,
by defining X = x—U;,1 Vv, the incremental objective function
Eq. (I0) with respect to e is converted to:

Orri1(e) =[x —ell3 + Blle]: -

We omit the derivation of the incremental updating scheme
on e, as it is the same as the updating of E in Eq. (9). The
completed incremental updating scheme for our incremental
learning model is shown in Algorithm [2]

(16)

a7

Algorithm 2: Algorithm for incremental updating model.

Input: the new data matrix X;; 1 = [X;,x] € RM*(+1),
base matrix U, € RM*K  coefficient matrix
V, € REXt error matrix E; € RM** and the
corresponding parameters
Output: base matrix U, ; € RM*K coefficient matrix
Vi1 = [V, v] € REX(EHD "and error matrix
Ei 1 = [Es,e] € RMx(+D)
1 Set: stopping error €.
2 Construct the weight matrix W, ; by using Eq. and
the Laplacian matrix L;y1 = Dyy1 — Wiy

3 Initialize ¢ = 0 and calculate ~1, H; and wepgq.
4 Repeat _
s | Update U;t] by Eq. (T3);
6 | Update vi*! by Eq. (T4);
7 | Update e+ by Eq. (9);
8 ii=1+1;
i+l _yyi
o Until P —Yinllr

|‘Ui+1”F -7

The convergence of the three iterative models can be easily
proved in the similar way as in [20], [[14], [23], [48], [L8].

IV. THE INVERSE NLCF MODEL
In this section, we will analyse the inv-NMF/inv-NLCF
modeﬂ from data clustering viewpoint. Compared to the con-
ventional NMF, the base matrix U in inv-NMF model is s-
panned by the candidates Y, namely, U ~ Y C. Each column

I'The main difference between these two models is that the inv-NLCF model
incorporates the local coordinate constraint while the inverse NMF does not.

(U1 U1V + AVi(Dg1): 41 + AVdeng + pn diag(U[ Uy yq)];”

(14)
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Fig. 4. Encoding coefficients obtained by NMF and inv-NMF feature coder.
In NMF coding scheme, the encoding coefficients for a “good” candidate or
a “bad” candidate are similar and thus lacking discriminative ability. In our
inv-NMF coding scheme, a “good” candidate distributes near a base vector,
which indicates that this candidate resembles certain base vectors with high
response values. Whilst a “bad” candidate spreads over the whole space, and
has extremely low response values to all these base vectors.

c; in C denotes the coefficients of a certain base vector u;
projected by all candidates. Each row ¢() in C corresponds to
the responses of one candidate on the base matrix U, which
can be regarded as discriminative feature for classification in
visual tracking. Specifically, if the data points are similar to
each other (or they are from the same class) as shown in Fig.[2]
these base vectors will manifest clustering property in different
cues, rather than an oversimplified projection (i.e. PCA) in a
low-dimensional space.

A. Inverse NMF versus NMF

In the conventional NMF for feature coding [16], a candi-
date y is represented by a linear combination of base vectors
U with the nonnegative coefficient vector v. These coefficient
vectors can be regarded as the discriminative features for dif-
ferent candidates. However, this operation renders that when
the base vectors are used to represent a “bad” candidate (i.e.
the background region), the reconstruction error (||y — Uv||3)
would be large. In this case, the coefficient vector v cannot
accurately represent the candidate. As shown in Fig. 4] a bad
candidate is represented by these base vectors with relatively
similar encoding coefficients, which means that the encoding
coefficients are not discriminative enough to distinguish good
candidates from the bad one.

Comparably, the goal of the inverse NMF model is not to
reconstruct a base vector by all candidates with the corre-
sponding column vector c;. Instead, it aims to generate each
row c¢? of C as a feature vector, which can be regarded as
a probability that one candidate projects on the base matrix

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2699676, IEEE

Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. **, NO. **, ** 2017 6

U. As shown in Fig. 4] the encoding coefficients for a “good”
candidate denote that this candidate resembles some base vec-
tors with high response values, while a “bad” candidate has
extremely low response values to all these base vectors. Such
difference of responses for various candidates can be fully ex-
ploited to produce discriminative feature vectors, which help
to separate the target from the background.

B. Inverse NMF versus Reverse Sparse Representation

Compared with the reverse sparsity theory in [33[], [7], the
encoding vector ¢ in our method has more distinct advan-
tages with the following two merits.

First, rather than directly using the templates in inverse s-
parse representation, our NMF based method can explicitly
capture information in different cues.

Second, from the perspective of data clustering, if Y con-
tains a set of good candidates (i.e. similar to the target), these
good candidates will spread among the base vectors as shown
in Fig. El In this case, a few nonzero coefficients in c(?) are
obtained, as base vectors can be easily represented by their
good neighbouring candidates. As a result, the sparsity of our
method is naturally guaranteed without any additional sparsity
constraint. For bad candidates, they are incoherent in the sub-
space spanned by base vectors. There is no definite relationship
between the background and the target representation U. If Y
contains a set of bad candidates sampled from the background,
it is difficult for these bad candidates to represent base vectors
accurately and sparsely. As a result, these corresponding coef-
ficient vectors do not hold the sparsity property as that in the
positive sample case. By exploiting this difference between the
candidates in the target and the background, the base matrix
U can be mapped onto the associated coefficient vectors. The
resulting coefficient vectors are used as discriminative features
to separate the target from the background.

C. Identifying Candidates in Inv-NLCF Model

The local coordinate constraint is incorporated into the in-
verse NMF method, which helps to preserve the similarity of
coefficient vectors. We estimate the positive coefficient vector
C,os using the target patches T),s as base vectors, namely:

K
: 2 T 1/2))2

min [[U = Tpos Cposl[F+¢ Y || (urd —Tyos) T}

Cpos = , (18)
s.t. Cpos >0

where 1 € RY and I'y, € RV*V is a diagonal matrix spanned
by the kth column of C,,s. Similarly, we can easily derive
the formula for estimating C,,., from the negative templates
T)eq, Which is:
K
min | U=Tyey Creg 3473 || (il = Toey) Y}/
ned k=1
5.t. Cpeg >0
where T € R"™" is a diagonal matrix spanned by the kth
column of C,,,. For training process, each row of C,,s and
Ceq corresponding to a positive and a negative feature vec-
tor, is sent to SVM classifier for training process. For testing

2
HF , (19)

process, the candidates Y are sampled at each frame, and then
are used to estimate the coefficient matrix C by solving the
following constrained optimization problem:

K

. 2
Hlén”U*YCHl%‘FC;H(Uk].T fY)QIICmHF’ 20)
st. C>0

where ( is regularization parameter and 2, €
agonal matrix spanned by the kth column of C.

Note that the objective function in Egs. (I8)), and
with respect to Cp,s, Cpeq and C are convex functions w.r.t.
the variables to be optimized. Therefore, there are many off-
the-shelf methods for solving this constraint linear quadrat-
ic programming problem, such as interior point method, and
APG [27]. To seek for the unified solving algorithm frame-
work, we still use the similar updating rule for V in NLCF
shown in Eq. (). For example, each element in the feature
vectors C with respect to candidates Y is obtained by:

20+ DY U)ar
2YTYC + (G +(F1)s
where G; = (f.f,....f)T € RS*K_ Similarly, the col-
umn vector is defined as f; = diag(Y'Y) € R®, and
F, = (fi,f1,....,f1) € RYK_ After several iterations, the
optimal C (also includes C,,s and C,,.4) is obtained. Subse-
quently, the SVM classifier is employed to assign the encoding
feature vector c¢(¥) to the target or the background.

R5%5 is a di-

t+1
Csk

— 21

V. NLCF VARIANTS IN TRACKING FRAMEWORK

In this section, we incorporate the above models into our
tracking framework.

A. Farticle Filter in visual tracking framework

Generally, particle filter is based on the theory of Bayesian
inference. The rationale behind particle filter is to estimate the
posterior distribution p(z|Y1.:) by a finite set of randomly
sampled particles. Given some observed image patches at the
tth frame Y. = {y1,¥2,...,y+—1}. the state of the target z;
E]can be recursively estimated as follows:

P(2e| Y1) p(}’t\Zt)/p(zt|zt—1)p(xt—1|Y1:t—1)dX, (22)

where p(z;|z;—1) is a motion model depicting state transition
between two consecutive frames, subject to Gaussian distri-
bution with mean z,_; and variance o2. The optimal state
at tth frame is then obtained by maximizing the approximate
posterior probability:

z;y = argmax p(y¢|z:)p(2z¢|zi—1). (23)

Zy
In our proposed observation model, the observation likelihood
can be measured by the reconstruction error of each observed
image patch, namely:

p(yilz;) oc exp(—[ly; — Uvil3), Vi (24)
To make our algorithm more robust, a coarse-to-fine search
scheme for the optimal candidate is proposed. After obtaining

2The state z; = [Pz, Py, 0, s, o, @] represents translation on X, Y direction,
rotation angle, scale, aspect ratio, and skew respectively.
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Y™ and Y, we do not simply choose the candidate with the
highest classification confidence value as our tracking resulf’}
The observation likelihood can be measured by the reconstruc-
tion error of positive candidates Y (noting that the time index
t is omitted for simplicity):

Py} 2) = argmaxexp(~ ! — Uv,[3). Vi,

J

where y; represents the ith positive candidate from Y+, and
v; denotes the jth column of coefficient matrix V. The opti-
mal state z* from the positive samples Y with the minimal
reconstruct error is chosen as the tracking result. Such search-
ing scheme incorporates the merit of generative methods into
the discriminative classification problem.

For incremental updating in visual tracking, every ten frame,
the tracking result closest to the mean value of these ten results
is chosen as the newly added sample x* into X. Note that, to
ensure the dimension of X unchanged to save memory space,
we discard the element in X closest to x*. By our incremental
updating model, the base matrix U is totally updated. The
corresponding coefficient vector v* and error vector e* are
updated while the remaining vectors are kept unchanged with
details in Algorithm [2| Finally, we summarize the proposed
tracker in Algorithm 3] below.

(25)

Algorithm 3: Algorithm for the proposed Tracker

1 fort =110 m do

2 Use a simple tracker;

3 Extract samples T, and T4 in tth frame;

4 end

5 Obtain the data matrix X and the initial appearance
model by Algorithm [1}

6 for t = m + 1 to the end of the sequence do

7 S particles Y1.5 are sampled;

8 Inverse NLCF: obtain encoding vectors in each row

of Cpos, Creg and C by Eq. 2I));

9 Train a SVM classifier by C,os, Cpeg, and then

conduct classification on the encoding vector C;

10 for each positive particle y;r do

11 Compute their likelihood by Eq. (23);

12 end

13 Choose x; with the minimal reconstruction error;

14 Update: for each 10 frames do

15 Choose the best tracking result x;;, and then
replace x*;

16 Recalculate W and D by Eq. (3);

17 Employ the incremental scheme in Algorithm
after the updated X is obtained;

18 end

19 end

VI. EXPERIMENTS
In this section, we test the proposed tracker on the Object
Tracking Benchmark (OTB) [[1] with 29 trackers and 51 video

3In our experiments, statistical results show that the number of Y+ ac-
counts for about 10% of the whole Y.
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Fig. 5. Plots of OPE. The performance score for each tracker is shown in
the legend. For each figure, the top 10 trackers are presented for clarity.

sequences. Besides, SST [28] based on sparsity theory is al-
so compared. Experiments including parameter analysis and
computational complexity analysis are also further provided.
Setup: Our tracker was implemented in MATLAB on a PC
with Intel Xeon E5506 CPU (2.13 GHz) and 24 GB memory.
The following parameters were used for our tests: the graph-
regularized parameter was set to A = 1; the number of initial
positive templates and the negative templates were N = 140
and r = 280, respectively; the number of base vectors was
K = 16; the corresponding regularization parameters in E-
q- @ were 1 = 0.001, v = 0.001 and § = 1; the local
coordinate regularization parameter in Eq. (I8) and Eq. (20)
were ( = 0.1;

A. Qualitative Evaluation

1) Evaluation metrics: Similar to [[1], two evaluation meth-
ods are used in one pass evaluation (OPE): precision plot and
success plot. They show the percentage of successfully tracked
frames measured by two widely used metrics: mean center
location error (CLE) and Pascal VOC Overlap Ratio (VOR)
[49]]. Small CLE value indicates accurate and good tracking
result. The overlap ratio measures the overlapping rate between
the tracked bounding box and the ground truth box, which is
defined as e = %ﬂ]ggg, where R and R are the areas
of the tracked and ground truth boxes, respectively.

To rank these trackers, two types of ranking metrics are
provided in [1]. One is the Area Under the Curve (AUC) met-
ric for the success plot, and the other is the representative
precision score at threshold of 20 pixels for the precision plot.

2) Overall performance: We show the overall performance
of OPE for our tracker and compare it with some other state-
of-the-arts (ranked within top 10) as shown in Fig. 5] The top
5 trackers on success plot include SCM [38]], SST [28]], Struck
[50], TLD [51] and our method. It can be observed that our
method ranks first on the success plot and precision plot. The
satisfactory performance is largely dependent on the accurate
appearance model and discriminative feature vectors generated
by the inv-NLCF model in our method.

Besides, in Tab. |I, we also give the corresponding result-
s (CLE and VOR) of recent state-of-the-art methods includ-
ing correlation filter based trackers MUSTER [3]], CFLB [53]],
KCF [8]] and CN [54]; ensemble based trackers MEEM [4] and
IMT [52]. Moreover, we compare the extended version of the
proposed method with HOG feature. Among these trackers,
the top three trackers are MUSTER, MEEM, and our method
(with HOG feature) respectively. By comparing with the two
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TABLE I
AVERAGE CENTER LOCATION ERRORS (CLE) AND AVERAGE VOC OVERLAP RATIO (VOR) OF VARIOUS ALGORITHMS FROM OTB WITH 51 TASKS.
THE FIRST, SECOND AND THIRD BEST SCORES ARE HIGHLIGHTED BY BOLD, UNDERLINE AND italic, RESPECTIVELY.

Method Ours Ours  MUSTER [B] MEEM [4] KCF [8] IMT [52] CFLB [53] CN[54] IST 7] | NMF  Sparse  Classification

Feature HOG  Gray HOG 4-channel” HOG Mutiple2 Gray Color Gray ‘ Gray Gray Gray
CLE 33.7 42.3 17.3 22.3 35.5 48.7 90.6 64.8 853 | 78.1 70.6 48.3

VOR(%) 54.2 50.9 65.0 57.9 51.9 51.7 37.8 44.8 381 | 402 41.1 49.7

!'3-channel in CIE Lab color space and a non-parametric local rank transformation on L channel.
2 IMT method incorporates three features including gray intensity, HOG and Haar,

best existing trackers MUSTer and MEEM, we see that our
tracker still has room for improvement. For example, the pro-
posed method can combine short-term and long-term templates
to obtain better performance.

3) Attribute based performance analysis: Each sequence in
OTB [1]] is annotated with eleven attributes that indicate which
challenging factors are included. In Fig. [f] we present the top
10 trackers on success plots and precision plots in terms of
four main attributes. On Deformation, our method outperforms
the other methods and obtains 12% improvements on the pre-
cision plot than the second best tracker. This is mainly due to
the accurate appearance model in the NMF variants. On Occlu-
sion, the proposed tracker achieves the top level performance
in the precision plot and the success plot. On the remaining
attributes, our method also yields promising performance.

4) Qualitative evaluation: Fig.[]| shows a qualitative com-
parison of our tracker with four baseline methods on 16
extremely challenging videos. We see that IVT, ASLA and
Struck often lose the target completely when it suffers from
severe occlusions (e.g. SUV and Jogging.2) expect our method
and SCM. However, SCM often fails to track the object with
pose variations (e.g. Basketball and Singer2), background clut-
ters (e.g. Freeman4). Apart from SCM, most tracker are also
not able to accurately predict the location of the target when
abrupt motion (Deer) and motion blur (Jumming) occurs. In
contrast, our tracker effectively tackles the above challenging
factors such as occlusions, shape deformation, undesirable il-
luminations, and motion blur, etc.

B. Key Component Validation

Above comparisons have shown that our tracker is superior
to other existing methods, and this section studies the effect
of every key component in our algorithm, and see how these
components contributes to improving the performance.

1) Influence of different feature coding methods: We quan-
titatively analyse the influence of four feature coding mod-
el (our inv-NLCF model, NMF, reverse sparse representation
based tracker IST [7]], and sparse representation) in Tab. [I}
They are named as “Ours (Gray)”, “NMF”, IST [7] and “s-
parse” respectively. In “NMF” method, the inverse NMF repre-
sentation is substituted by the conventional NMF method that
is used in our inv-NLCF model. To verify the importance of
locality coding methods, “sparse” method is proposed, which
does not consider local coordinate coding constraint. In the ap-
pearance model and inv-NLCF model, the locality constraint
is replaced by a L; 1 norm for sparse representation in Eq. (6)),
Eq. (18), Eq. (19), and Eq. (20). In terms of average CLE and

average VOR, our method based on inverse NMF representa-
tion outperforms standard NMF for coding owing to the more
discriminative feature. Compared to inverse sparse representa-
tion, the proposed inverse NMF model provides a justification
for natural sparsity property.

Besides, we analyze the coarse-to-fine search to verify the
effectiveness of the inverse NMF coding scheme. As men-
tioned before, a coarse-to-fine search scheme is proposed to
obtain the optimal candidate, which chooses a positive can-
didate with the minimal reconstruction error. Here, we on-
ly use SVM classifier to choose the optimal candidate with
the highest classification confidence, which serves as a coarse
search scheme (termed as “Classification”). Compared to the
proposed method, the “Classification” method shows a slight
decline in tracking performance in terms of CLE and VOR
as shown in the last column of Tab.[ll. Although this scheme
may not obtain an optimal candidate, it still guarantees a sub-
optimal candidate as demonstrated.

2) Influence of different constraints: We quantitatively
show the influence of different regularization terms on OTB
tracking results in Fig. [} When § is set to zero, the initial
appearance model overlooks the sparse error constraint,
named as “No error” method. Its success rate degenerates
about 8.1% when compared to the proposed method. Without
NLCF constraint (“No NLCF”) in the initial appearance
model, the success rate drops to 44.5%. When ¢ (“No
inv-NLCF”) is not taken into consideration by inv-NLCF
model, the success rate is as low as 44.3%. This result is
similar to that in the initial appearance model without u.
The success rate decreases to 43.1% (A = 0) in “No graph”
method and 43.4% (v = 0) in “No orth” method respectively.

Among these five regularization terms, sparse error con-
straint mostly affects the tracking results. The second-ranked
constraint is orthogonality constraint with a reduction of 7.7%.
The remaining three constraints also decreases the final track-
ing results, with specific values from 50.8% to around 44%.

C. Convergence and Computational Complexity Analysis

We show the convergence curves of different NMF vari-
ants for the initial appearance model. These curves have been
averaged on 51 sequences on OTB as shown in Fig.[9(a). Com-
pared with the conventional NMF and GNMF, the proposed
method achieves higher accuracy precision with less iterations
to reach steady state. In Fig. [J[b), we give a comparison be-
tween NMF and NLCF in inverse NLCF model. These two
iteration curves have been respectively averaged on the corre-
sponding curves at each frame in Car4 sequences. Compared
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Success plots and precision plots of OPE on four main attributes (Deformation, Occlusion, Background Clutter, and Out-of-plane Rotation).
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Fig. 7. Representative frames in the tracking results. The subfigures from top to bottom, left to right are sequences: Soccer, Freeman4, Freemanl, and
Skatingl; Jogging.2, Couple, Basketball, and Lemming; Singer2, Subway, David3, and Jumping; David, Boy, Deer, and Suv.
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Fig. 8. Plots of OPE. The success plot and precision plot of our proposed
tracker versus different regularization terms, where “No graph” is associated
with A, “No error” is with respect to 3, “No NLCF” is with y, and “No orth”
relates to v in Eq. (€. ¢ is the regularization parameter in inv-NLCF model
associated to “No inv-NLCF”.

to NMF (¢ = 0 in Eq. (20)), NLCF obtains a smaller residu-
al error and also needs fewer iterations (about 300 iterations).
Next we will analyze the computational complexity of the pro-
posed method involved with the initial appearance model and
the inv-NLCF model.

For the initial appearance model, suppose that the multi-

NMF inv-NMF
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08 s NLCF 08
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(b) inverse NLCF model

iteration
(a) initial appearance model

Fig. 9. Objective values versus iteration numbers for NMF variants in (a) the
initial appearance model and (b) the inverse NLCF model, where the stopping
error is set to 1075, and the maximal iteration time is fixed to 1000.

plicative updates stop after ¢ iterations, the total cost for NL-
CF is O(tMNK) demonstrated in [20] and [23]. Besides,
the graph regularizer needs O(pN2M) to construct the p-
nearest neighbour graph. Therefore the overall time cost for
graph-based NLCF is O(tM NK + pN2M). Based on this,
the orthogonality constraint is introduced into our appearance
model. Although this term increases M K2 fladd (a floating-
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point addition), M K? flmlt (a floating-point multiplication)
and M N fladd on X, the computational complexity still re-
mains unchanged. And also, the introduced sparse error con-
straint in Eq. (@) incurs O(MK) due to the computational
complexity of shrinkage operation. Finally, the overall compu-
tational complexity of our proposed initial appearance model
is Ot(MNK +MK)+pN?M). Likewise, the computation-
al complexity for our inv-NLCF model is the same as that of
NLCF algorithm, namely O(t M NK).

D. Fuailure Cases

As shown in our experiments, the proposed method can
address these factors including deformation, occlusion, out-of-
plane rotation and other attributes. However, our method may
fail if the object is affected by drastic appearance variations,
and abrupt motion, especially when the target undergoes strong
illumination and background clutters as shown in Fig. [T0}

| 1

- da‘ni’l
Vaeda |

|

Fig. 10. Two failed tracking cases: Bolt (the left); MotorRolling (the right).

In Bolt sequence, due to the appearance variations and fast
motion of Bolt (i.e. the runner), it is difficult to accurately pre-
dict the location of Bolt. In MotorRolling sequence, when the
motorcyclist undergoes illumination variation and background
clutters, the corresponding feature vectors lack discriminative
ability to separate the target from the background. From this
point of view, the proposed method can still be improved to
handle some extreme cases.

VII. CONCLUSION

This paper introduces the new inv-NLCF model for visu-
al tracking from the viewpoint of data clustering. It combines
merits of generative tracking methods and discriminative meth-
ods to learn an accurate appearance model and discriminative
encoding vectors. Such two scheme help our tracker yield en-
hanced discriminant ability, and thus effectively separates the
target from the background during the tracking process. Quan-
titative and qualitative comparisons on OTB have demonstrat-
ed the effectiveness and robustness of the proposed tracker.

APPENDIX A
THE BASE ORTHOGONALITY CONSTRAINT

We define U = [uy,uy,...,u,] € R™*", and expand the
jth dominant element of UOUT in Eq. (@), which leads to:

-—uﬂg uﬂ—i—ujgg Ui+ - +anE U -

i#1 i#2 i#n
Then we seek for the relationship between tr(UOU ") and
Doitj u, u; by expanding tr(UOU "), and arrive at:

(Uou™) (26)

r(UOU ") i UOU ) = iulj imﬁ
k=1

Jj=1 i#j
n n
ZUQJ‘ Zuzi +-+ Zumj Zumi
Jj=1 i#j j=1 i#] @7
m n n m n n
S IEDILEEDIP LD DL
k=1j=1 i#j k=11i=1 J#i
n n n n
:ulTZuj—FuzTZuj—&— "+UIZUJ':ZU;FUJ'
J#1 J#2 j#n i#]
APPENDIX B

ITERATION RULES FOR THE INITIAL APPEARANCE MODEL

We first omit the irrelevant term with respect to E, and
Eq. (6) is rewritten as:
O(U,V) =X -UV|E+ A r(VLV")

N
+py lleal’ -
=1

Let ;1 and ¢y; be Lagrange multipliers for nonnegative con-
straints u;;, > 0 and vg; > 0, respectively, and define the
matrix (¥);; = ;i and (P)g; = Prs, then the Lagrange
function L is:

L=u(@U +XXT+UVV'UT 2XV'UT+7U0U")

28
A2 4 yruouT). 2P

N
tr(®V)+tr (uZ(xilTAixiT —2%;1TA,UT +UTAU)

i=1
(29)

The partial derivatives of £ with respect to U and V are:

N

oc oy T

—=2UVV -2XV —2%;1'A;+2UA;)+27UO+V

s +u;( %;1'A;+2UA;)+27UO +

v =2U VV —2UX + u(G —2UX + F) + 2AVD + @

(30)
where G and F have been defined as mentioned in Sec-
tion[ll-B] By using the KKT conditions and some straight-
forward algebraic manipulations, we can obtain the following
updating rules:

pXVT + SN 1A

t-li‘—l “—u

Y (UVVT +u YN UA; +4U0) a1
DUTX + AVW),;

U}t:lrl %U]t” (<M+ ) + )k

(2UTUV + 4G + F + 2AVD)y;

Note that 3 %;,1TA; = XV and 3N, UA,; = UH, we
see that Eq. (3T) can be exactly rewritten as Eq. (7).

APPENDIX C
THE OBJECTIVE FUNCTION OF INCREMENTAL UPDATE ON v

To tackle the incremental update on v, Eq. (I0) should be
expanded on V and v. By omitting the terms in Eq. (T0)
irrelevant to V and v, we have:

Opy1 = ||Xt - Ut+1VtH12: + Atr (Vt+1Lt+1VtT+1)
2
+x— Ut+1v||2+uZH %17 —Upys) Al/zHF (32)

+ullx1T = Up) A3
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where Xt+1 = Xt+1 — Et+1. After expanding [17] D. Donoho and V. Stodden, “When does non-negative matrix factoriza-

)\U‘(V ot L ot 1V;V+1) and making some mathematical tion give a correct decomposition into parts?,” in Proc. Adv. Neural Inf.

. Process. Syst. (NIPS), 2003, pp. 265-272.
rearrangements, we have: [18] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Manifold regularized dis-
r. t t criminative nonnegative matrix factorization with fast gradient descent,”

tr(Vip L Vi) = ZZZ(Vt) 1i(Lis1)i; (V) 0 IEEE Trans. Image Process., vol. 20, no. 7, pp. 2030—2048, 2011.
I=1i=1j=1 (33) [19] C. Gong, T. Liu, D. Tao, K. Fu, E. Tu and J. Yang, “Deformed Graph
T T Laplacian for Semisupervised Learning,” IEEE Trans. Neural Netw.
+2v Vi(Lig1):41 +V V(Lpp) 1,641 - Learn. Syst., vol. 26, no. 10, pp. 2261-2274, 2015.

After preserving the terms related to v and dropping the other ~ [20] D- Cai, X. He, J. Han, and T. Huang, “Graph regularized nonnegative
A R . R matrix factorization for data representation,” IEEE Trans. Pattern Anal.

terms, Eq. (@) is simplified to the following formulation: Mach. Intell., vol. 33, no. 8, pp. 1548-1560, 2011.

_ _ 2 T [21] J. Kim, R. Monteiro, and H. Park, “Group sparsity in nonnegative matrix

Fiy1 = ||X Ut+1v||2 T2V Vt(Lt+1):7t+l1/2 2 (34) factorization,” in Proc. SIAM Int. Corgf.pDI;ta Azining, 20%2, pp- 851-
v v(L x1T — Uy )A . 862.

+ ( t+1)t+17t+1 + MH( t+1) s ||F [22] Y. Qian, S. Jia, J. Zhou, and A. Kelly, “Hyperspectral unmixing vi-

By using HAHI% = tI‘(ATA) and tr(ABC) = tr(BCA) = a sparsity-constrained nonnegative matrix factorization,” IEEE Trans.

tr(CAB), Eq. @ is rewritten as: Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, 2011.

[23] Y. Chen, J. Zhang, D. Cai, W. Liu, and X. He, “Nonnegative local

.FtJrl = ||X — Ut+1V||% + /LXTX].TV + uVTdiag(U;rJrl Ut+1) coordinate factorization for image representation,” IEEE Trans. Image

T T T Process., vol. 22, no. 3, pp. 969-979, 2013.
+ 2Av Vt(Lt+1);,t+1 + Av V(Lt+1)t+17t+1 - ZMVUt-HX’ [24] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint
35) nonnegative matrix factorization,” in Proc. SIAM Int. Conf. Data Mining,
L . 2013, vol. 13, pp. 252-260.

which is exaCtly what we seek in Eq' @ [25] C. Ding, X. He, and H. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering,” in Proc. SIAM Int. Conf.

Data Mining, 2005, vol. 5, pp. 606-610.
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