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Normalized Cut-Based Saliency Detection by
Adaptive Multi-Level Region Merging

Keren Fu, Student Member, IEEE, Chen Gong, Irene Yu-Hua Gu, Senior Member, IEEE, and Jie Yang

Abstract— Existing salient object detection models favor
over-segmented regions upon which saliency is computed. Such
local regions are less effective on representing object holistically
and degrade emphasis of entire salient objects. As a result, the
existing methods often fail to highlight an entire object in complex
background. Toward better grouping of objects and background,
in this paper, we consider graph cut, more specifically, the
normalized graph cut (Ncut) for saliency detection. Since the
Ncut partitions a graph in a normalized energy minimization
fashion, resulting eigenvectors of the Ncut contain good cluster
information that may group visual contents. Motivated by this,
we directly induce saliency maps via eigenvectors of the Ncut,
contributing to accurate saliency estimation of visual clusters.
We implement the Ncut on a graph derived from a moderate
number of superpixels. This graph captures both intrinsic
color and edge information of image data. Starting from the
superpixels, an adaptive multi-level region merging scheme
is employed to seek such cluster information from Ncut
eigenvectors. With developed saliency measures for each merged
region, encouraging performance is obtained after across-level
integration. Experiments by comparing with 13 existing methods
on four benchmark datasets, including MSRA-1000, SOD, SED,
and CSSD show the proposed method, Ncut saliency, results
in uniform object enhancement and achieves comparable/better
performance to the state-of-the-art methods.

Index Terms—Salient object detection, normalized cut,

clustering, region merging, saliency map.

I. INTRODUCTION
ALIENCY detection is a long-standing problem in
computer vision and plays a critical role in understanding
the mechanism of human visual attention. Applications to
vision and graphics are numerous, especially in solving
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problems that require object-level prior such as “proto object”
detection [1] and segmentation [2], [3], content based image
editing [4]-[7], and image retrieval [8].

To benefit complex computer vision tasks, a new sub-field
in saliency detection called salient object/region detection
has recently emerged and drawn a lot of research attentions.
It aims at compensating the drawback of previous eye fixation
prediction models [1], [9]-[11] on enhancing entire objects.
To achieve this, many previous salient region detection
methods [12]-[16] exploit contrast and rarity properties on
local superpixels or regions. Commonly employed segmenta-
tion techniques include superpixels [17], mean shift [18] or
graph-based segmentation [19]. These techniques are known
to be useful for eliminating background noise and reducing
computation by treating each segment as a processing unit.

Such segmentation methods, which are usually employed by
previous models to generate over-segmentation, take merely
local color similarity into account and could lead to regions
less effective on representing object holism. As a result, these
regions prevent the enhancement of holistic salient objects.
An example is shown in Fig. 1 where state-of-the-art methods
fail to capture the entire human body as they are based on
local segments, and separate the body into fragment regions.
Only the head region of the girl is emphasized by most of
these methods as it is somewhat more salient than other body
parts. This example indicates that a better grouping to cluster
an object as a whole can be useful for saliency detection as the
self-organization capability of human vision system captures
the entire object as a whole, as indicated by the ground truth
image (GT) in Fig. 1.

Towards better grouping of objects and background, in this
paper we study unsupervised graph cut for the purpose of
decomposing image into visual clusters. More specifically, we
focus on the Normalized graph cut (Ncut) that partitions a
graph in a normalized energy minimization fashion. The Ncut
can be solved in an efficient way by solving a generalized
eigen-system. The resulting eigenvectors contain good cluster
information. In this paper, we propose to directly induce
saliency maps via eigenvectors of the Ncut, contributing to
accurate saliency estimation of visual clusters. Thereby, the
proposed method, Ncut saliency (NCS), highlights the entire
human body (Fig. 1). To leverage Ncut eigenvectors for
inducing saliency maps, we develop an adaptive multi-level
region merging method to turn Ncut cluster information into
regions. Saliency measures can then be easily applied to these
regions. To the best of our knowledge, the Normalized graph
cut (Ncut) has not been used to directly induce saliency maps
in previous works.

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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An example case where state-of-the-art methods [12]-[15], [20], [21] fail to detect the entire object. About processing units, SF [15], LR [20],

MR [21] work on superpixel level. RC [14] uses single level graph-based segmentation [19]. DRFI [13] uses multi-scale graph-based segmentation [19].
HS [12] uses a hierarchical segmentation method. The proposed method (NCS) uses the eigenvectors of Ncut and succeeds in highlighting the entire object.

One of related work that is worth mentioning is from [12],
as it is a method shares some common motivation with ours.
To alleviate impact of small-scale patterns with high contrast,
Yan et al. [12] define three levels of sizes for regions, and
merge a region to its neighbors if it is smaller than pre-defined
sizes. Our method differs from theirs as we discover holistic
information of objects by using the Ncut. It is a non-parametric
method whereas the scale parameters in [12] are manually
determined. Another difference lies in the way of generating
multiple segmentation levels.

It is also worth noting that there are some previous works
involving both graph cut and saliency detection [2], [14], [15],
[22], [23]. Those methods differ from ours as they treat the
two steps separately. Saliency detection is conducted first and
resulting saliency maps are then used to generate “seeds” or
“initial regions” to guide graph cut. The outcome of graph
cut is a binary segmentation map. For example in [23], seed
regions are generated by saliency detection in [1] and then
“MaxFlow” is applied to solve the min-cut problem. In con-
trast, our saliency detection is induced by the Ncut. Thereby
in our method the graph cut takes place prior to saliency
detection. In [2], [14], [15], [22], and [23], the results of graph
cut highly depend on saliency maps that provide “seeds”,
cut performance could suffer from a less accurate saliency
map that is derived from less good grouping. It is also worth
noting that there are many applications besides figure-ground
segmentation where saliency maps can be useful. Another
concurrent work [24] uses Ncut as a post-enhancement to
refine a preliminary saliency map. Their idea is somewhat
similar to [23], where saliency detection is performed first.
In this paper, we adopt a very different computational scheme
for saliency detection as compared to [24].

The main contributions of the paper are twofold: (a) Apply
the Ncut to salient region detection, and induce a saliency map
by Ncut eigenvectors for better visual clustering; (b) Embed
saliency detection in an adaptive multi-level merging scheme
to discover cluster information conveyed by Ncut eigenvectors.

A preliminary version of our system was described in [25].
This paper differs from [25] in several ways. First, we start
the problem from Ncut viewpoint whereas [25] starts from
multi-level viewpoint. For technical details, the framework in
this paper is the same as [25], but modifications have been
made to improve the performance. For example, 2-ring graph
topology and boundary connection are adopted in this paper
whereas [25] only uses local neighbor graph. Edge detection
is incorporated for graph affinity in this paper whereas
[25] only considers superpixel color difference. Besides,
more technical details and extensive results are provided,

showing the proposed method outperforms the previous
method in [25].

The reminder of the paper is organized as follows.
Section II describes the related work on salient object
detection. Section III briefly reviews the fundamental of
Normalized graph cut, based on which we build our method.
Section IV gives detailed description of the proposed method
by adaptive multi-level region merging. Experimental results
and performance evaluation are included in Section V.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK

The literature of salient object detection is huge and we
refer readers to comprehensive surveys [11], [26]. There are
a number of ways to classify existing methods. We classify
previous works in terms of processing units upon which
saliency is computed. This is based on the starting point of
this paper.

A. Pixel-Based

Zhai and Shah [27] introduce image histograms that only
model the luminance channel to calculate pixel-level saliency.
Pixel-level spatial saliency is measured as the luminance
contrast between image pixels. Achanta er al. [28] provide a
saliency approximation by subtracting the average color from
low-pass filtered result of image. This operation is equivalent
to combining center-surround differences of all bandwidth to
detect objects of different sizes. Shi et al. [29] compute pixel-
wise image saliency by aggregating complementary appear-
ance contrast measures with spatial priors. Liu et al. [30]
segment salient objects by aggregating pixel saliency cues
in a conditional random field. Their saliency cues include
center-surround histogram contrast, saliency maps from the
spectral residual method [1], and color spatial distributions.
The linear weights for those cues are learned under the
Maximized Likelihood (ML) criteria by tree-weighted belief
propagation. Cheng et al. [31] measure saliency by hierarchi-
cal soft abstraction. They form a 4-layer hierarchical structure
(respectively are pixel layer, histogram layer, GMM layer
and clustering layer) with an index table to associate cross-
layer relations efficiently. Saliency estimation using color
contrast and distribution are conducted on the coarse layers
and then propagated to the pixel layer. The drawback of using
pixels as the basic units is that simple computation of color
contrast [27], [28] is less satisfactory for complex scenes
whereas incorporating holistic pixel-wise information like [30]
requires heavy computation. Additionally, it is easily affected
by small-scale noise in an image.
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B. Patch/Region/Superpixel-Based

Patches have also been considered for computing object
saliency in early time. Gopalakrishnan ef al. [32] perform
random walks on graphs constructed from patches to find
salient objects. The global pop-out and compactness prop-
erties of salient objects are modeled in random walks by
the equilibrium access time performed on a complete and
k-regular graph. Goferman et al. [7] combine local and global
features to estimate the patch saliency in multi-scales. To con-
sider both local and global factors, they compute saliency of
a certain patch as its contrast to the nearest patches in the
image. Under this framework, inner parts of an object are often
attenuated due to the edge preference. Margolin er al. [33]
define patch distinctness as L1 norm in PCA coordinates and
combine it with color distinctness. Unfortunately, using local
patch contrast [7], [33] could cause edges highlighted. Besides,
patches are less good on edge-preserving rendering since they
could contain edges or large color variation inside.

To overcome the disadvantage of patches, much effort
has focused on pre-segmentation techniques to obtain edge-
aware superpixels/regions and shown success in eliminating
unnecessary details and producing high quality saliency detec-
tion. Examples in this category include: Cheng et al. [14]
extend the method in [27] and incorporate color histograms.
A regional contrast saliency measure is proposed in [14] as
the color contrast to other regions. Perazzi et al. [15] propose
a saliency filter that formulates complete contrast and saliency
estimation using high dimensional Gaussian filters. A Bayesian
framework is adopted in [34]. First, saliency points are applied
to obtain a coarse location of the saliency region. Based on
the rough region, a prior map is computed for the Bayesian
model. Wei et al. [35] treat boundary parts of an image as the
background. The superpixel saliency is defined as the shortest
geodesic distance to image boundary. Since a salient object
often does not adjoin image boundary, the geodesic distance
between image boundary and the object should be large.
Shen and Wu [20] solve saliency detection as a low rank
matrix recovery problem, where salient objects are represented
by a sparse matrix (noise) while the background is indicated
by a low rank matrix. This sparse and low rank assumption
however cannot be satisfied in complex scenes, leading to
unsatisfactory results. Yang et al. [21] utilize similar boundary
priors as [35] however propagate saliency via graph-based
manifold ranking from four image borders separately. Four
saliency maps generated are then multiplied to achieve the
final one. Despite these efforts, as mentioned in section I,
small local segments alone hardly reflect object holism and
global meanings.

C. Multi-Scale Based

Since over-partitioned segments have limited capabilities in
modeling holistic properties as shown in Fig. 1, a number of
recent approaches employ multi-scale segmentation schemes
to extract non-local contrast information. Yan et al. [12] merge
regions according to user-defined scales (e.g., 3 size scales in
their case) to eliminate small-size distracters. Jiang ef al. [13]
learn several optimal scales from a series of manually defined
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scales using a least-square estimator. However, segmentation
methods used above are still based on local clustering and
do not reflect holistic information of objects. Although multi-
level segmentation is used in our method, we exploit the Ncut
for saliency detection and embed saliency estimation in an
adaptive multi-level region merging scheme.

III. THE NORMALIZED CUT: REVIEW

The Normalized graph cut (Ncut) proposed by
Shi and Malik [36] normalizes the cost of graph cut by
using the total edge connections towards all nodes in a
graph. Given a similarity graph G = (V, E) (a graph whose
edges measure the similarity between vertices), let W be
its adjacency matrix, D be its degree matrix (a diagonal
matrix with diagonal entry d; = Zj w;j, where w;; is
entry of W), and L. = D — W be its Laplacian matrix. The
cost of a cut between two subsets A and B is defined as
cut(A, B) := Zu,-eA,ujeB w;j. Let A be the complement of A.
For a given number k of subsets, the Ncut aims to choose a
partition Ay, ..., Ax that minimizes:

k cut(Ai, Al)
Ncut(Ay, ..., Ay) = ; 2530004 V) (1)
where assoc(A;, V) = ZvieA,vjEV w;j is a measure of set
size, i.e. the larger |A;| is, the higher assoc(A;, V) will be.
The exact solution for (1) is NP hard. However, by defining
a discrete indicating vector for each A; and relaxing the
discrete constraints [37], the continuous indicating vectors
for the multi-cluster Ncut in (1) can be derived from the
first k smallest eigenvectors of DL, or the first k smallest

eigenvectors of the following system:
D —-W)v =/Dv 2)

where v and A denote the eigenvector and eigenvalue. The
solution of the 2-way Ncut (k = 2) is given by its second
smallest eigenvector. For detailed mathematical derivation,
see [36], [37]. The Ncut is tightly related to the spectral
clustering. As the continuous indicating vectors for the multi-
cluster Ncut contain cluster information, k-means clustering
can be applied to those eigenvectors to obtain cluster labels,
known as spectral clustering [37].

It is worth noting that comparing to the min-cut that
minimizes the summation of the numerators in (1), the Ncut
normalizes each cut cost as a fraction of the total edge connec-
tions to all the nodes in the graph. Due to this normalization,
the Ncut is a biased cut on fairly large set of vertices. Note
our goal for salient object detection is to find good grouping
of visual contents, usually large objects, meanwhile prevent
grouping of small clusters that are usually noise. The Ncut
rightly satisfies this demand. In addition, the Ncut in (1) is a
global criterion that partitions the graph in a non-parametric
way. It is also efficient to compute. An example of Ncut
eigenvectors generated by our method is shown in Fig. 2.
It implies that Ncut eigenvectors contain good cluster infor-
mation that well groups visual contents together, i.e. objects
and background. Contents likely to be in the same cluster
(i.e. similar pseudo colors in each eigenvector in Fig. 2) should
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be treated as a whole and rendered the same saliency during
the saliency detection.

IV. PROPOSED METHODOLOGIES

This section details the proposed method for salient
object detection. Firstly, the graph construction is discussed
in IV-A. Details on applying the Ncut to obtain cluster
information are given in Section IV-B. An adaptive graph-
based merging method is described in IV-C that is used to
generate multi-level segmentation by discovering the cluster
information from the Ncut. Regional saliency measures are
introduced in IV-D. Finally, IV-E describes the formulation of
the final saliency map.

A. Graph Construction for the Ncut

1) Pre-Processing: We first over-segment an input image
into superpixels using the SLIC algorithm [17]. The result is
a set of compact superpixels that are homogenous in color and
maintain image boundaries. N & 200 superpixels are selected
for each input image since such number of superpixels suffices
for detecting salient objects [21]. Let the ith superpixels
be Rl(.) and the corresponding average CIELab colors and
spatial locations be c? and p?, i =1,2,...,N. The super-
script “0” indicates the initial superpixel level. Define a graph
G = (V, E) whose vertices V are superpixels and E are edges
(to be detailed later). Thereby, only a small set of graph nodes
needs to be considered. This drastically increases the efficiency
compared to a pixel-level graph [36].

2) Construct Edge Connections of Graph: To improve the
Ncut performance, two extensions are made upon [25]. First,
we extend the local range of graph connections by constructing
connection between superpixel R; and R; that satisfies either
{Rj € N;} or {R; € Ni, Ry € N;} (2-ring graph, illustrated
in Fig. 3), and N; denotes the neighborhood (adjacency)
of superpixel R;. This extension improves the Ncut perfor-
mance (discussion for this is in Section V-D). Furthermore,
we associate boundary superpixels with each other (Fig. 3).
The rationale behind is that boundary superpixels have high
probability to belong to a same background (e.g. in Fig. 3, in
the sea behind the man).

3) Construct Edge Weights of Graph: The edge weights of
graph for the Ncut encode the similarity between nodes. Given
two connected superpixels R; and R; in the graph, we derive
the entries of matrix W from the combination of color and
intervening image edge cues between superpixels. Firstly, we
define a joint metric that measures the distinction between the
superpixels as below:

dapp+edge

: = (1 - o)d” + ad** 3)
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An example of top eight smallest eigenvectors (v to vg) from Ncut. Eigenvectors are visualized in pseudo colors.

A node belonging to
the salient object

Fig. 3. Connection of graph edge E. Left: an input image. Right: edge
connection between superpixels. A vertex (specified by a red dot) connects
to both its adjacent superpixels (green connection) and superpixels sharing
common boundaries with its adjacent superpixels (blue connection), resulting
in a 2-ring graph topology. Connection between arbitrary boundary superpixels
(brown dots) is constructed at the same time.

(a) (b) (c)

Fig. 4. From left to right: (a) an input image, (b) superpixel representation,
and (c) edge detection by [39]. In this case the edge magnitude between two
specified superpixels are more significant than superpixel color difference.

where is the appearance difference and dfjdge is the
intervening contour magnitude. The appearance difference

dl.ajp ? is defined as:

app
d!

app __ 110 0
di;" = lle; — ¢l “)

CIELab color difference is widely used for graph construction
in graph-based salient region detection [21], [35] and shown
to be effective. The intervening contour magnitude dfj 8¢ is
defined as:

dedge _

i max [E(p) )

pel(p).pY)

where [ (p?, p(}) is the straight line connecting the locations
of superpixels Rl(.) and RY, p runs over every pixel location
on the line, and E(p) is the corresponding edge probability
on an edge map E. (5) is known as intervening contour
cue [38]. In certain cases, using an edge map provides better
delineation between objects and background than (4). For
example, despite very weak difference in superpixel colors
in Fig. 4, the edge detection well highlights the entire plot
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Fig. 5. An illustrative example for region merging. The first column shows the original image and the reconstructed graph edges, based on which the merging
proceeds. A high intensity indicates a high edge weight between two superpixels. Only weights among adjacent superpixels are shown. Three columns in the
middle show merged regions at level #8, #12 and #13 together with the intermediate saliency maps. A total of 16 levels is obtained in this example.

of the cheetah due to texture distinction. It is worth noting
that any edge detector that outputs boundary probability map
can be employed. We use the structured random forest edge
detector [39] that works on multi-scales and has state-of-the-
art performance with reasonably fast processing speed.

As mentioned before, boundary superpixels are all con-
nected with each other. One can observe some disadvantages
when computing (5) between boundary superpixels. Since the
spatial distance between two boundary superpixels could be
large, e.g. one superpixel is on the left border while the other
is on the right border of an image, d;dge can be extremely
large as there often exists strong edges on the straight
line connecting them. This can prevent clustering between
potential background. Therefore, for diejdg ¢ among all boundary
edge _ 4app
ij ij
Noting before integration in (3), dfjdg “and d;” are normalized
to [0, 1] by dividing their global maximum respectively.

In (3), a specifies the relative importance of the edge
detector. By incorporating edge detection term, better object-
background delineation is observed, leading to better Ncut
results. This incorporation is optional and can be easily
disabled by letting o = 0.

Finally, the entry of matrix W is defined by the joint metric
in (3) as:

superpixels, d is set to alleviate such problem.

app+edge
ij e 0 0
wij = exp(—T) if R; and R ; are connected (6)
0 otherwise
where o2 is empirically set as 0.1 for all experiments.

Diagonal entries of W are set to zeros to prevent self-loops in
the graph.

B. Apply the Ncut to Obtain Cluster Information

We then solve (2) for the generalized eigenvectors
V0, V1, V2, ..., Vayee (correspond to nvec 4+ 1 smallest eigen-
values 0 = 19 < 41 < 42 < ... < Aupec). The resulting
eigenvectors of Ncut are the soft indicator vectors of dif-
ferent clusters [37]. Eigenvectors themselves do not contain

any saliency information but only cluster information. Also
eigenvectors themselves cannot be directly added because they
may not correspond to each other.

Since saliency detection is often conducted by applying
saliency measures to regions, e.g. regional contrast, we further
consider turning such cluster information into region so that
those measures can be applied easily. The essence is that
eigenvectors are soft cluster labels, and each individual eigen-
vector implies the extent of superpixels belonging to different
clusters. Hence, the difference between values of vertices
on the eigenvectors can be integrated, indicating “inter-class
distance” [40]. We reconstruct the graph edge e;; between
the two connected R? and R? by integrating the difference
between values of vertices on nvec smallest eigenvectors
VI, V2, .oy Vipec:

nvec

1
= —— Vi (RY) — vi(RY 7
€ij ; Tklvk( i) — Vi(R))I @)

where vk(R?) indicates the value in eigenvector v corre-
sponding to the superpixel Rl(.). The weighting by 1/ is
motivated by the physical interpretation of the generalized
eigenvalue problem as a mass-spring system [40]. In practice,
nvec = 8 suffices while further increasing it introduces extra
noise due to large approximation errors of eigenvectors [36].
We have also observed in our experiments that the performance
of Ncut for clustering visual contents is affected by the
topology of the graph. Since long range graph connections
facilitate the propagation of local grouping cues across larger
image regions, larger graph radius may make clustering better.
Similar phenomenon has been observed in [41], where graph
affinity is constructed on pixel level. Hence in this paper
the 2-ring graph connection is a trade-off between clustering
performance and region connectivity.

C. Graph-Based Adaptive Merging of Vertices

We apply a graph-based region merging scheme [19]
to adaptively discover the cluster information in (7).
Let R = {R!, Rlz, ...} be a partition of V in the /th level
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and R,l{ € R! corresponds to its kth part. Since vertices
correspond to superpixels, partition of the graph will result
in regions. A criterion D is defined to measure the pairwise
difference between Rll. s R;:

I I ply_
Dij = D(R;, R}) = meanukeR{,umeR’,,ekmeE{ek’"} ®

where “mean” is an averaging operator over graph edges
connecting Rf and R.. To discover the cluster information,
an adaptive threshold Th is defined to control the bandwidth
of Df.j: at level /, we fuse Rf., Rﬁ. into one cluster (i.e. region)
if their difference Df. ; < Th. Indexes of these sets are found
by searching the minimum repetitively as below:

i*, j* = argmin Df-j, s.t. Df-j <Th 9)
i
Merging in a level stops when (9) results in no solution,
i.e., pairwise difference between two arbitrary regions is larger
than Th. At the next level [ + 1, Th is increased as:
Th < Th+ Ty (10)
where T is a step length and the merging continues as above.
T; is automatically computed by Ty = (emax — €min)/n
in all experiments, where e;4x, €min are the maximum and
minimum of reconstructed graph edges, respectively, and n is
defined as the “quantifying number”. n = 30 is determined
empirically (see V-C). The proposed “merging and adapting”
procedure continues until all regions in R’ are merged together,
ie., |[R'| = 1. We start the merging from initial superpixels
{RY, Rg, o, R%}, and Th is initialized to be T; in the 1st
level (level #1). As Th increases and merging proceeds,
multi-levels are obtained.

D. Regional Saliency Measures During Merging

Let Rf. be a region at merging level [. We propose the
following regional saliency measures for Rf.:

1) Figure-Ground Contrast: We compute the figure-ground
contrast by comparing a region’s color distance to all boundary
superpixels. As a merged region constitutes of a set of super-
pixels, the problem boils down to the comparison between
two superpixel sets, and is defined as:

0_ .0

S,-flg _ Zj,k\R_?eR{,leeg e — el an
’ IRI] - 1B

where B represents a set containing all boundary superpixels.
Notation |-| indicates the number of elements in the set, i.e., the
number of superpixels. Different from the previous regional
contrast hypothesis [14], here we only compare a region with
a potential background, i.e. boundary superpixels according
to the verified boundary hypothesis [21], [35]. This is more
efficient to compute for regions in different levels as boundary
set B is always fixed. In practice, as |B| remains a constant
for all regions, it is omitted in our implementation.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Edge detection

>

Size control on

Reconstructed graph edges Size control off

Fig. 6. Illustration for size control. Though a small area of “leaves” is
grouped by Ncut, it is suppressed in the integrated saliency map (Njp,, = 4).
No smoothing is performed at this point.

2) Center Bias: Statistical results in [26] and [42] show
that human attention is center biased, indicating that dis-
tinctive regions close to image center are likely to be
salient [12], [16], [20]. Therefore, the mask with a Gaussian
distribution G(p) is applied at the image center, and the
average probability value lying in each region is computed:

ij?e]el! G(P(j)')

12
R 12)

i =
where G(p(j).) corresponds to Gaussian value of location pY.
Although it has been argued in [35] that boundary hypothesis
is more generic than the center prior, we still find the latter
useful when there are multiple regions disconnected from
image boundary but scattered in the whole image.

3) Boundary Cropping: Boundary hypotheses [21], [35]
imply that regions touching image borders are likely to
be background. This phenomenon can be explained by the
“surroundedness” in Gestalt laws [43], [44]: a region with a
complete/closed contour is likely to be perceived as figure.
We simply incorporate this cue by cropping saliency of regions
according to numbers of image borders they touch (suppose
an image has four borders), defined as:

e [1 if £l <1

= 13
0 otherwise (13)

il —
where 5% is the number of image borders that Rll. touches.
(13) implies that a region cropped by more than one image
borders will be suppressed in the computed intermediate
saliency map. This measurement can maintain objects that
touch none or one border such as the half-length portrait in
photography.

4) Combination of Regional Saliency Measures: Since
salient regions are assumed to achieve high scores under
all three metrics above, linear combination or multiplica-
tion can be considered. Similar to [15] and [21], we chose
multiplication as good background suppression is observed.
Furthermore, Sfjf can effectively suppress image boundary-
touching regions if the multiplication is used. Hence, the final
saliency score for the region Rf is defined as:

final _ ofg  qcb  gbe
Sio =Sy i Sig

l)

(14)
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where Sflg , Sfll’ , S; ; respectively denotes the “figure-ground”
contrast sahency, ‘center bias” saliency, and “boundary crop-
ping” saliency. This regional saliency score is further assigned
to the corresponding superpixels and pixels in the image to
formulate intermediate saliency maps (Fig. 5 and Fig. 7).

E. Final Saliency Map Formulation

The final saliency map is formulated by linearly integrating
intermediate saliency maps from all levels followed by graph-
based manifold ranking [21] for smoothing:

f=D-pW)"! (15)

where W is defined in (6), D is the degree matrix of W
(see III), s and f are respectively saliency values of superpixels
(in vector form) before and after the smoothing. f is set
to 0.99 according to [21]. Finally, f is normalized to [0, 1].
Its components are further assigned to corresponding pixels
for a final saliency map.

The justification for the cross-level integration is: as the
merging proceeds, the cluster information in Ncut vectors
is gradually discovered and is turned into regions, yielding
to more accurate saliency estimation guided by the Ncut.
Although one can choose one or several high levels to perform
saliency estimation, the underlying challenge is to decide till
which level a salient object would survive. An illustrative
example is shown in Fig. 5 where the horizontal sea-sky line
is very salient and only two regions (sky and beach) appear in
top levels. The salient object (truck) is merged since a middle
level. No regions are deemed as salient since level #13 due
to (13). In contrary, robust performance for generic situations
is achieved by integrating all levels.

Size Control for Salient Objects: In most cases of salient
object detection, users wish to detect relatively large visual
objects. Though Ncut favors cut of large regions, it is not a
hard constraint on region sizes. To further eliminate impact
of small-scale patterns, we consider to limit the size of a
region. A straightforward way to consider this is by the
number of superpixels in each region. Other metric for mea-
suring region size can be considered as well, e.g. the one
in [12]. We “inpaint” a region in an intermediate saliency
map if it contains superpixels fewer than a pre-defined
number N,,. This is done for a region by replacing its
saliency score with the closest saliency of its neighbor regions.

Reconstructed

(only weights between
adjacent superpixels
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Graph-based multi-level region merging

il O3

Level #1 Level #5 Level #10

Level #15 Final sallincy map

Integrated map

Intermediate saliency & across-level integration

The block diagram of proposed system.

Fig. 6 shows an example where the size control is used to
eliminate small-scale noise.
The block diagram of our complete scheme is shown Fig. 7.

V. EXPERIMENTS AND RESULTS

In this section, we compare our scheme, Ncut
saliency (NCS), with several state-of-the-art methods on
four commonly used datasets.

Datasets and State-of-the-Art Methods: Four bench-
mark datasets for evaluation include commonly used
MSRA-1000 [28] (1000 images), SOD [45] (300 images),
SED [46] that consists of two parts, i.e. SED1 (one object
set) and SED2 (two objects set) each containing 100 images,
and CSSD [12] (200 images with texture background).
We compare the proposed method (NCS) with 13 state-
of-the-art salient region detection methods: CA (Context
Aware) [7], FT (Frequency Tuned) [28], LC (Luminance
Contrast) [27], HC (Histogram Contrast) [14], RC (Region
Contrast) [14], SF (Saliency Filter) [15], LR (Low Rank) [20],
GS (Geodesic Saliency) [35], HS (Hierarchical Saliency) [12],
PCA (Principal Components Analysis) [33], DRFI (Dis-
criminative Regional Feature Integration) [13], GC (Global
Cue) [31], MR (Manifold Ranking) [21]. We have not com-
pared with eye fixation models such as Itti’s [9] and Hou’s [1]
due to different purposes of the methods.

Criteria: Precision, recall, F-measure (Fp) [15], [21],
[28], [31], and mean absolute error (MAE) [15], [31] are used
for the evaluation. Definition for these criteria are as follows:

MT)YNG MT)YNG
Precision(T) = M, Recall(T) = M
|M(T)] G|
(16)
(14 %) Precision x Recall
Fp = 17
g B2 x Precision + Recall (17)
MAE = T > 1Smap(x) — G| (18)
map XESmap

In the above equations, M (T) is the binary mask obtained by
directly thresholding a saliency map S;,4p using threshold T,
G 1is the ground truth map, | - | in (16) denotes the sum area
of masks, A2 is set as 0.3 as suggested in previous work
to emphasize precision, x is a pixel location with a saliency
value Syqap(x), and |Spqpl is the total size (width by height)
of the map. The reason of using MAE as a compensation
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Fig. 8. Quantitative evaluations by precision-recall curves (left column), adaptive threshold (middle column) and mean absolute error (MAE) (right column)
on four benchmark datasets: from top to bottom are MSRA-1000, SOD, SED (includes SED1 and SED2), and CSSD. Note because SF only provides results
on MSRA-1000 while GS only provides results on MSRA-1000 and SOD, we did not compare with them on the rest datasets.

criterion is that precision-recall curves are insensitive to the inside the mask with arbitrary variance, one can still obtain
uniformness of a saliency map. For example, by pixel-wisely a good precision-recall curve with such heterogeneous map.
multiplying a ground truth map with a 2D Gaussian centered On the other hand, MAE can be affected by small error
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accumulation since it sums all pixel-wise errors. Under MAE,
saliency maps after smoothing can obtain higher MAE values
than those before smoothing (Fig. 12). In contrast, precision-
recall curves are insensitive to this problem. A good saliency
detection method should achieve high precision-recall curves
meanwhile maintain low MAE.

Experiment Setup: The implementation of the full version
of our method is: 2-ring graph topology, with edge detection
(e = 0.5), Ncut, size control (N, = 4), and smoothing.
Quantifying number n for adaptive region merging is 30,
and o2 of the graph affinity in (6) is fixed as 0.1 for all
experiments. All parameters are determined empirically and
are not carefully tuned, though they can be optimized over
moderate training images. The above configuration achieves
good performance in our experiments.

A. Comparisons With the State-of-the-Art Methods

We compare the full version implementation of the proposed
method to 13 existing methods on four benchmark datasets.
Noting that size control for SED2 dataset is turned off as
images in SED2 usually contain one large and one small
objects. Small objects sometimes are as small as two or
three superpixels. Abbreviations of all competitors have been
listed in the beginning of this section. Precision-recall curves
generated by using fixed threshold 7 from O to 1 are shown
in Fig. 8. The performance of our method is comparable to
the most recent techniques including HS, DRFI and MR.
Our method significantly outperforms HS on MSRA-1000,
SOD, SED2, and CSSD. Marginal improvement is observed on
SED1. Besides, observing precision-recall curves, our method
is comparable to DRFI [13] and MR [21] on all the four
datasets.
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Visual comparisons on MSRA-1000. The abbreviations have been listed at the beginning of Section V.

Adaptive threshold experiments were carried out, where the
adaptive threshold is defined as two times the mean value of
a saliency map [14], [28]. Results are shown in the middle
column in Fig. 8. Our method achieves both the highest pre-
cision and F-measure on MSRA-1000, SED2, CSSD datasets,
providing further support to the effectiveness of the proposed
method. Second best precision and F-measure for our method
are observed on SOD and SEDI. For SED1 whose images
contain single objects in more complex scenarios, our method
performs close to MR [21]. An observation on SED2 is
since this dataset has many labeled objects which violate the
boundary prior (e.g. 6th row in Fig. 11), MR performs less well
than usual. In such cases, it may be better to keep a vague
detection using only contrast rather than explicit boundary
prior. This reveals why RC and HC that perform less well on
other datasets, achieve relatively good performance on SED2.

To further evaluate the methods, we compute the MAE val-
ues [15]. As shown in Fig. 8, our method produces consistently
the lowest error on MSRA-1000, SED and CSSD datasets,
indicating more robustness against different datasets. Despite
good performance in precision-recall curves and F-measure,

C [14], HC [14], FT [28] and LR [20] have the highest
MAE due to the weak background suppression.

Fig. 9-Fig. 11 show visual comparisons on four datasets.
Our method effectively suppresses background clutter and uni-
formly emphasizes the foreground objects. Better delineation
between the object and background can be observed in com-
plex scenes, such as the last row in Fig. 10. In most visual
comparisons, much clearer object boundaries are obtained
compared to other methods, e.g. 9th row in Fig. 9, Ist, 4th,
5th rows in Fig. 10, and 3rd, 7th, 8th rows in Fig. 11.
In addition, the proposed method is able to deal with images
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containing “color ramps”. Such effects are usually caused
by shadow or lighting conditions (4th-7th rows in Fig. 9).
Our region merging scheme effectively combines them into
background, preserving perceptual homogeneity. In contrast,
the contrast-based GC [31], SF [15] and geodesic based
GS [35] methods that use over-partitioned image segments
are less better due to color heterogeneity. Our method also
handles challenging cases that the state-of-the-art methods fail.
For example, a key procedure in MR [21] is intermediate
thresholding and re-propagation to refine the results (called
“second stage” in [21]). The operation is critical in achieving
high performance. Since this operation depends highly on the
threshold, once isolated cluttered regions are segmented, they
are difficult to be absorbed into the background even with
the help of re-propagation, e.g., the shadow of flower in 3rd
row of Fig. 9. Another side-effect of this operation is the risk
of missing useful object parts. This is consistently observed
on SED2 dataset. As two objects in one image may be of
different saliency levels, one of the two objects in an image
can be “lost” after thresholding, leading to a performance drop

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

DRFI MR

Visual comparisons on SED1, SED2 and CSSD respectively. The abbreviations have been listed at the beginning of Section V.

(e.g. Sthrow in Fig. 11). In contrast, such risk is avoided in our
method as no threshold is used to binarize the saliency map for
performance boosting. By removing small size distracters, our
method achieves good performance on cluttered background
when other methods are less satisfactory, e.g. Fig. 11 last row.

B. Validation of Individual Modules

Alternatives of the proposed method include: smoothing
on/off, size control on/off, edge detection on/off (by chang-
ing a). Our scheme can also work without the Ncut by
using (3) to replace (7). The reason is that the graph-based
merging which examines the average graph edges using (8)
may discover silhouettes of objects [25]. Besides, one may
also turn off the region merging and just compute saliency
measures on initial superpixel regions. In this subsection, we
show the test results on the effectiveness of each individual
component by gradually removing these modules from the full
version of our method. Quantitative results for this experiment
on MSRA-1000 are shown in Fig. 12. Considering both gains
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Original

Fig. 13. Robust performance is obtained by combining appearance difference
and edge detection, rather than using merely either. No smoothing at this point.

in precision-recall curves and MAE criterion, modules which
have important contributions to the system performance are
the region merging, Ncut, edge detection (Fig. 13), and final
smoothing. Performance variation can be clearly observed
in Fig. 12. The effect of size control is relatively minor on
this dataset but we do observe individual cases where they
play crucial roles (e.g. Fig. 6). Combining all these steps
makes the system more robust and capable of achieving better
performance. Fig. 13 shows the robustness of combining the
edge cue with the color cue.

C. Quantitative Evaluation of Region Merging

We also find that our method is robust to the “quantifying
number” n in region merging. Quantitative results generated in
the experiments is by the full implementation with different n.
Fig. 14 shows the results on MSRA-1000 dataset. When using
an n > 30, our method produces similar results. Very minor
effect on the MAE is observed when varying n from 10 to 40.
Less good results in n = 5 are caused by missing object
parts. Due to the large step T resulted from a small n, some
desired salient regions can be directly merged with background
without appearing in any intermediate level. Contrarily, large
n results in more levels to compute. We set n = 30 as default
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for a good precision-recall curve although precision can be
further sacrificed for the speed.

D. Sensitivity to the Range of Graph Connection

As clustering performance of the Ncut is related to the range
of graph connection, we evaluate the detection performance
by the full implementation with different ranges of graph
connection in this part. We gradually increase the graph con-
nection from 1-ring to 4-rings (Noting that the 1-ring graph is
the local neighbor graph in [25]). Quantitative evaluation
on MSRA-1000 is shown in Fig. 15. One can observe that
2-ring graph topology achieves the best results. It is better
than 1-ring, whereas 1-ring is better than 3-rings and 4-rings.
4-ring case has the worst results. Extending the graph con-
nection leads to more non-zero entries in the graph affinity
matrix W. This directly influences the performance of the
Ncut. Though a long range connection can effectively prop-
agate grouping cues to further regions, it can also confront
inappropriate grouping that groups scattered background noise
together or groups parts of object region with far away
background regions, e.g. in Fig. 16 the “white cloth” on the girl
is grouped with the “white door” in the background by using
4-rings. Hence both too short and too long range connection
are inappropriate. In this experiment, we observe 2-ring graph
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Fig. 16. Results generated by full implementation with different ranges of
graph connection. From left to right: 1-ring, 2-ring, 3-ring, and 4-ring. The
original image is shown in Fig. 1.

connection achieves the most optimal performance under the
current system settings.

E. Efficiency and Speed

The average time cost for our full implementation on
MSRA-1000 is 2.6 seconds for n equal to 30, where about
0.25s is taken by superpixel segmentation and 0.4s by random
forest edge detection. Though the adopted regional saliency
measures are computationally light, the main computation load
lies in the Ncut (eigenvalue and eigenvector solving) and
multi-level region merging. The computation time reported
is acquired on an Intel 17-4720HQ 2.6GHz laptop with 8GB
memory using unoptimized Matlab code. It is slower than
Matlab code of MR which takes 0.5s but faster than DRFI
which requires 5.5s under the same hardware condition.

F. Discussion on Future Work

Future work can be conducted in several aspects: 1) Graph
cut that partitions a graph in a discriminative way, has
shown its strong capability for clustering visual contents
for saliency detection. As the Ncut is a classical technique,
other advanced graph cut techniques which provides superior
grouping performance can be considered. 2) Performance of
integrating intervening contour cue and appearance difference
of superpixels indicates that there is independent information
in each cue to exploit for saliency detection. In the future,
a learning-based approach can be used to study the optimal
combination for constructing the graph affinity. Besides, more
feature cues can be extracted from superpixels. 3) In our work,
a fixed range of graph connection is empirically determined
and used for all cases. In the future, an adaptive metric which
determines the optimal connection range based on image
properties is interesting to study. 4) Other effective regional
saliency measures can be exploited and employed into our
system, e.g. geometric information like convexity of a region.

VI. CONCLUSION

We have presented a new salient object detection framework
based on the Normalized graph cut (Ncut) and adaptive multi-
level region merging. The former guarantees good grouping of
visual contents and the latter provides a feasible way of turning
the cluster information into explicit regions, where region-
based saliency measures can then be easily applied. When
combined, they greatly improve the accuracy on detecting
entire objects and effectively suppress the background.
We also validated on combining intervening contour cue from
edge detection to construct graph affinity. Results show better
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delineation between object and background, leading to better
grouping results. Size control is a parameter in the proposed
method that guarantees users’ flexibility on deciding their
own minimal size for object detection in some applications.
Experiments have shown that our method performs well on
enhancing objects holistically meanwhile suppressing the
background. It achieves state-of-the-art performance on four
commonly used benchmark datasets in terms of competent
precision, recall and F-measure, meanwhile maintaining the
lowest MAE.
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