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Graph-based diffusion techniques have drawn much interest lately for salient object detection. The
diffusion performance is heavily dependent on the edge weights in graph representing the similarity
between nodes, and are usually set through manually tuning. To improve the diffusion performance, this
paper proposes a robust diffusion scheme, referred to as manifold-preserving diffusion (MPD), that is

assumption reflects the conditional random field (CRF) property and the related penalty term enforces
similar saliency on similar graph neighbors. The penalty term related to the local reconstruction
assumption enforces a local linear mapping from the feature space to saliency values. Graph edge
weights in the above two penalties in the proposed MPD method are determined adaptively by mini-
mizing local reconstruction errors in feature space. This enables a better adaption of diffusion on dif-
ferent images. The final diffusion process is then formulated as a regularized optimization problem,
taking into account of initial seeds, manifold smoothness and local reconstruction. Consequently, when
applied to saliency diffusion, MPD provides a higher performance upper bound than some existing
diffusion methods such as manifold ranking. By utilizing MPD, we further introduce a two-stage saliency
detection scheme, referred to as manifold-preserving diffusion-based saliency (MPDS), where boundary
prior, Harris convex hull, and foci convex hull are employed for deriving initial seeds and a coarse map
for MPD. Experiments were conducted on five benchmark datasets and compared with eight existing
methods. Our results show that the proposed method is robust in terms of consistently achieving the
highest weighted F-measure and lowest mean absolute error, meanwhile maintaining comparable pre-
cision–recall curves. Salient objects in different background can be uniformly highlighted in the output
final saliency maps.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Salient object, or region detection is an important research
topic in computer vision [1,2]. Given an image, the main aim is to
detect and uniformly emphasize objects attracting visual attention
in the image, meanwhile suppress irrelevant background. Its
applications to vision and graphics are numerous, especially in
topics requiring object-level priors such as “proto object” detec-
tion [3], segmentation [4,5], content-based image editing [6–9],
and image retrieval [10]. In the past decade, a variety of models is
proposed, including heuristic color contrast-based models
[11,12,9,13–16], learning-based models [17–19], segmentation-
negu@chalmer.se (I.Y.H. Gu),
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assisted approaches [20–23], and graph-based saliency modeling
[24–27].

Among graph-based saliency modeling, graph-based diffusion
[26–28] has recently been studied for saliency detection with good
performance. To conduct saliency diffusion, an input image is first
represented by a graph, followed by computing the unified for-
mulation as follows:

s¼ Any ð1Þ
where An is a global pair-wise propagation matrix, y is a seed
vector that gives a preliminary assessment of saliency level of
graph nodes, and s is the diffused result.

Aiming at improving the diffusion quality and detection per-
formance, this paper proposes a novel and robust diffusion
method, referred to as manifold-preserving diffusion (MPD). MPD
builds jointly upon two assumptions on data manifold, namely the
smoothness [29–31] and local reconstruction [32,33], for better
preserving the manifold for saliency detection. The proposed MPD
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hence is a new way to compute An for the diffusion process in
saliency detection. Based on the two assumptions, we introduce
two penalties in the diffusion model. As described later, edge
weights of graph in the two penalties are determined adaptively by
solving two optimization problems. This enables better adaption of
diffusion on different images. By utilizing MPD, we further intro-
duce a two-stage saliency detection scheme, referred to as
manifold-preserving diffusion-based saliency (MPDS), where
boundary prior, Harris convex hull, and foci convex hull are
employed for deriving initial seeds and a coarse map for MPD.
Consequently, better salient object detection can be obtained in
various background.

In one of the related studies on diffusion-based methods, Yang
et al. [26] propose a manifold ranking-based saliency detector that
employs the graph-based manifold ranking [30] to diffuse energy
from four image borders. In their work, An has the form
ðD�αWÞ�1, whereW denotes the graph affinity matrix with entry
wij, D is the diagonal degree matrix whose ith diagonal entry is
di ¼

P
jwij, and α is a constant. One can see that An in their case is a

deterministic function on W. In [26], manually tuned edge weights
of graph are used for W, where the parameter is fixed on all
images. Furthermore, only the smoothness assumption is con-
cerned. The proposed MPD differs from [26] by utilizing two
assumptions and adaptive weights. Since different images have
different contents and color contrast, using manually tuned edge
weights is less desirable and can degrade diffusion quality. The
proposed method also differs from another work [27], where their
diffusion is based on geodesic distance.

The main contributions of this paper are threefold:

(i) We propose an effective graph-based diffusion method:
manifold-preserving diffusion (MPD) that jointly exploits the
assumptions of smoothness and local reconstruction on the
manifold.

(ii) We derive two types of graph edge weights by adaptively
minimizing local reconstruction errors in feature space. Hence
the method is more suitable to be applied on different images.
This is different from previous work where the edge weights
of graph are controlled by manually tuned parameter such as
bandwidth.

iii) We introduce a two-stage saliency detection scheme: manifold-
preserving diffusion-based saliency (MPDS), that leverages
MPD together with boundary prior, Harris convex hull, and foci
convex hull. The proposed MPDS achieves better performance
than 8 recently published methods on 5 benchmark datasets.

The remainder of the paper is organized as follows. Section 2
reviews related work on salient object detection. Section 3 describes
the proposed method in details, including the big picture on the
proposed method, graph construction, manifold-preserving diffusion
(MPD), and the two-stage manifold-preserving diffusion-based sal-
iency detection (MPDS). Results from experiments and comparisons
are given in Section 4. Finally, the conclusion is drawn in Section 5.
2. Related work

We classify existing methods into four categories: heuristic color
contrast-based methods, learning-based methods, segmentation-
assisted approaches, and graph-based saliency modeling. Methods
beyond these four categories fall into the fifth category. For more
details, readers are also referred to the comprehensive surveys [1,2].

Heuristic color contrast-based methods: Methods of this category
model saliency using local or global color statistics. The underlying
assumption is that salient objects are unique in color and present
high color contrast to the rest parts of an image. Many methods for
computing such contrast-based saliency had been proposed since
2006. Zhai et al. [11] introduce image histograms which only
model luminance channel to calculate pixel-level saliency. Achanta
et al. [12] provide a saliency approximation by subtracting the
average color from low-pass filtered result of an image. This
operation of [12] is equivalent to combining center-surround dif-
ferences of all bandwidth to detect objects of different sizes.
Goferman et al. [9] combine local and global features to estimate
patch saliency in multi-scales. To consider both local and global
factors, they compute saliency of a certain patch as its contrast to
the nearest patches in feature space. Under this framework, inner
parts of an object are often attenuated due to the edge preference.
Cheng et al. [13] extend the method in [11] and incorporate color
histograms. A regional contrast saliency measure is proposed as
the contrast to other regions. Jiang et al. [14] also use regional
contrast to define saliency. Instead, they use only context infor-
mation from neighborhood of a region. Perazzi et al. [15] propose
“saliency filter”, which formulates complete contrast and saliency
estimation using high dimensional Gaussian filters. Wang et al.
[16] compute pixel-wise image saliency by aggregating com-
plementary appearance contrast measures with spatial priors. A
more recent method [34] computes contrast-based saliency as
dissimilarity/similarity to carefully selected background/fore-
ground seeds. Most of the above contrast-based saliency are
straightforward to compute, though the performance is often less
satisfactory on images with complex background.

Learning-based methods: Methods in this category estimate
image saliency by machine learning. The basic idea is to learn
weights of features for saliency computation. Jiang et al. [17]
perform pre-segmentation for an input image and extract abun-
dant discriminative features from each region. A random forest
regressor trained is adopted to map features to a regional saliency
score. Liu et al. [18] segment salient objects by aggregating pixel
saliency cues in a conditional random field (CRF). The linear
weights for those cues are learned under the maximized like-
lihood (ML) criteria by tree-reweighted belief propagation.
Recently, Wang et al. [35] aim at segmenting objects-of-interest as
well but solve the problem in a general joint deep learning fra-
mework, where two convolutional neural networks are employed
collaboratively to boost the detection and segmentation perfor-
mance. Mai et al. [19] propose a data-driven approach for aggre-
gating saliency maps output by existing saliency detection models
using a CRF. Weights for aggregation are learned in a data-driven
way from most similar images retrieved from a pre-defined
dataset. Lu et al. [28] learn optimal combination of seeds by
maximizing figure-ground segregation. Learning-based methods
can achieve good performance in complex scenarios attributed to
the learning, however, high computational cost is usually needed
due to feature extraction and learning.

Segmentation-assisted methods: Methods in this category aim at
generating good segmentation, usually in hierarchy or multi-scale,
to facilitate saliency computation. Lu et al. [20] exploit the con-
cavity context in a scene and detect concave arcs from multi-scale
segmentation. The detected arcs then contribute to a figure-
ground segmentation phase. Yan et al. [21] propose a hier-
archical saliency detection method that merges regions according
to user-defined scales. Each region in a hierarchy is evaluated by
using local contrast and location prior. Cheng et al. [22] measure
saliency by hierarchical soft abstraction. They form a 4-layer
hierarchical structure including pixel layer, histogram layer,
GMM layer and clustering layer with an index table to associate
cross-layer relations efficiently. Saliency estimation using color
contrast and distribution is conducted on the coarse layers and
then propagated to the pixel layer. Jiang et al. [23] find potential
salient regions by maximizing a submodular objective function.
The problem is solved efficiently by finding a closed-form
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harmonic solution on the constructed graph for an input image.
The saliency of a region is modeled in terms of appearance and
spatial location. These methods, benefiting from some optimized
segmentation phases, can make entire objects emphasized and
hence boost the final performance.

Graph-based saliency modeling: These methods represent an
image by using a graph, where natures of salient objects, such as
high color contrast and compact color distribution, are modeled.
Gopalakrishnan et al. [24] perform randomwalks on graphs to find
salient objects. The global pop-out and compactness properties of
salient objects are modeled in random walks by the equilibrium
access time. Wei et al. [25] propose to treat boundary parts of an
image as the background. The patch saliency is defined as the
shortest geodesic distance on a graph to image boundary. Some
other methods propagate saliency energy from labeled seeds to
the entire image through graph. Yang et al. [26] propagate saliency
via graph-based manifold ranking from four image borders sepa-
rately. Four saliency maps generated are then multiplied to
achieve the final one. Fu et al. [27] perform diffusion from a coarse
energy map based on geodesic distance. Since many graph-based
diffusion models are related to CRFs, methods of this category can
emphasize holistic objects and achieve relatively good perfor-
mance. The proposed method belongs to this category. We pro-
pose a novel graph-based diffusion technique MPD with adaptive
weights. Our method is aimed at providing more robust diffusion
for saliency detection.

Other methods: Other works include: Shen et al. [36] solve
saliency detection as a low rank matrix recovery problem, where
salient objects are represented by a sparse matrix (noise) and
background is indicated by a low rank matrix. This sparse and low
rank assumption may hardly be satisfied in complex scenes,
leading to unsatisfactory results. A Bayesian framework is adopted
in [37]. First, saliency points are applied to get a coarse location of
the saliency region. Based on the rough region, a prior map is
computed for the Bayesian model. Margolin et al. [38] define patch
saliency as L1-norm in PCA coordinates and combine it with color
contrast saliency. Li et al. [39] model patch saliency by dense and
sparse reconstruction errors, where the dictionaries for recon-
struction are obtained from image boundary.
3. The proposed method

3.1. The big picture on saliency detection

Fig. 1 shows the big picture on saliency detection in this paper.
The proposed diffusion method, referred to as the manifold-
preserving diffusion (MPD), first involves the adaptive construc-
tion of the reconstruction matrix A and the affinity matrix W from
a superpixel-based graph G¼ ðV ; EÞ. The estimations of the two
matrices are formulated as two optimization problems under
some constraints towards minimizing local reconstruction errors
in feature space. With A and W computed, next MPD defines the
diffusion process as a regularized optimization problem, taking
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Fig. 1. The big picture on salien
into account of initial seeds, manifold smoothness and local
reconstruction. A closed-form solution exists for MPD. By utilizing
MPD, the proposed manifold-preserving diffusion-based saliency
(MPDS) incorporates boundary prior, Harris convex hull, and foci
convex hull so as to derive initial seeds and a coarse map for dif-
fusion. MPDS is a two-stage detection scheme, whose final output
is a final saliency map that highlights salient objects in the image.
The following subsections describe the proposed method in detail,
including graph construction, manifold-preserving diffusion
(MPD), and manifold-preserving diffusion-based saliency (MPDS).

3.2. Image preprocessing and graph construction

We first represent an input image by a graph G¼ ðV ; EÞ, where V is
a set of vertices (or nodes) and E is a set of graph edges. Given an
image, we first over-segment it into n SLIC superpixels [40]. Each
superpixel, denoted as vi; iAf1 : ng, is treated as a node in V. Super-
pixels vi and vj that satisfy either fvjANig or f(k; vjANk; vkANig are
connected to form an edge in E, where Ni;Nk denote a set of spatial
adjacent superpixels of vi; vk, respectively. Such connections lead to a
2-ring graph topology (Fig. 2). Besides, arbitrary boundary superpixels
are connected with each other since they are very likely to belong to
same background regions. An illustration for this graph structure is
shown in Fig. 2.

Hereafter, we use notation “i� j” to indicate that vi and vj are
graph neighbors, and “i≍j” otherwise. We extract a d dimensional
feature vector f i from each superpixel vi. In practice, it is the mean
CIELab color of each superpixel. We have extracted other color
features like RGB color but the performance seems degenerated.
This is not surprising because CIELab space characterizes human
vision property and is more appropriate for saliency detection
[15,13,26].

3.3. The proposed manifold-preserving diffusion (MPD)

In the following subsections, two n� n matrices A, W are first
defined based on the constructed graph.W is a symmetrical affinity
matrix with entrywij encoding similarity between vertices vi and vj,
and will be used for manifold smoothness assumption. A is a
reconstruction matrix with entry aij encoding reconstruction con-
tribution of vi to vj. It will be used for local reconstruction on
manifold. Note that since only connected nodes lead to a relation-
ship (i. e. Markov random field), wij=aij between non-connected
superpixels are set to 0, leading to sparse W and A.

3.3.1. Adaptive estimation of reconstruction matrix A
Matrix A is related to the manifold reconstruction penalty

which is based on the assumption that a node on a graph can be
linearly reconstructed by its graph neighbors in feature space.
Such linear relationship on high dimensional manifold should be
preserved when projecting to lower dimensional space. Inspired
by locally linear embedding (LLE) [32], computation of A in our
work is formulated by minimizing the overall reconstruction error
closed-form diffusion
by considering manifold

oothness and local
reconstruction
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MPD

cy detection in this paper.



Input image Superpixels and graph structure 2-ring topology (zoomed in)

Fig. 2. Superpixel segmentation (superpixel boundaries are in red) and graph topology. Blue circle dots refer to graph vertices and white lines refer to graph edges. For
illustrative purpose, only connections as a rectangle around the image boundary is visualized but note that there are connections between arbitrary boundary superpixels.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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as follows:

arg min
aij

Xn
i ¼ 1

Jf i�
X
j;j � i

aijf j J2þϵ
X
j;j � i

a2ij

8<
:

9=
; s:t: 8 i;

X
j;j � i

aij ¼ 1; aii ¼ 0 8 i≍j; aij ¼ 0

ð2Þ
where ϵ is a small number for regularization which guarantees
unique solution of (2). It is necessary when the number of graph
neighbors is larger than the feature dimension [32] (exactly our
case). We set ϵ¼ 10�4 in our implementation. Condition

P
j;j � iaij

¼ 1 ensures the reconstruction is linear and shift-invariant [32], i. e.
irrelevant to the coordinate origin. If we denote F¼ ½f1; f2;…; fn�T ,
the matrix form of the optimization problem above becomes:

arg min
A

JF�AFJ2FþϵJAJ2F s:t: A1¼ 1 8 i; aii ¼ 0; 8 i≍j; aij ¼ 0

ð3Þ
where 1 is an all–one vector. We solve each row of A independently
according to [32], and there is an analytical solution. Noting that the
difference between our case and [32] is that the numbers of non-
zero entries are different in different rows of A in our case. The main
reason is that since the superpixel-based graph is constructed for
saliency detection, the numbers of graph neighbors for different
nodes may not be identical, as compared with the commonly used
k-nearest neighbor graph in machine learning.

3.3.2. Adaptive estimation of affinity matrix W
Symmetrical matrix W encodes similarity between graph

nodes. In machine learning, the most common way to define such
similarity is by Gaussian kernel, i. e. wij ¼ expð� Jf i�f j J2=2σ2Þ,
where the standard deviation σ is related to the bandwidth of
similarity function (how “close” between samples is enough
“close”). A similar function was used in [26], however, σ was a
fixed parameter that is empirically determined. Their disadvantage
is that input images usually have different contrast and color
statistics. Hence, it is unlikely that a single value σ fits well to all
images. In the proposed method, we also utilize Gaussian weight
for wij, however, we select an adaptive and parameter-free solu-
tion to enhance the adaptability. Furthermore, instead of assigning
the same bandwidth σ to all feature components, we set
fσ ¼ σ1;…;σdg. This enables one to put different weights on dif-
ferent feature components. The affinity function then takes the
following form:

wij ¼ exp �
Xd
l ¼ 1

ðf il� f jlÞ2
2σ2

l

( )
ð4Þ

where fil is the lth element of feature vector f i, and d is the total
dimension of f i. Determining σ adaptively is an ill-posed problem due
to the lack of prior knowledge. Although in machine learning there are
heuristics to determine σ automatically, such as the median heuristics
[41] and local scaling [42], they do not work well on our superpixel
graph as they are highly sensitive to the graph topology. Inspired by
the aforementioned LLE [32] and also the recent advance in adaptive
edge weighting [43], following the reconstruction assumption similar
to (2), the estimation of fσ1;σ2;…;σdg is formulated by minimizing
the reconstruction error as follows:

arg min
fσ1 ;σ2 ;…;σdg

JF�D�1WFJ2F s:t: : 8 i; wii ¼ 0; 8 i≍j; wij ¼ 0 ð5Þ

where D is the diagonal degree matrix of W. Following [43], gradient
descent is used to optimize fσ1;σ2;…;σdg. Same as (3), we force the
diagonal entries of W to zeros to avoid self-reconstruction. We start
from an initial empirically determined value σ0 by letting σ1 ¼ σ2 ¼
…¼ σd ¼ σ0 (usually set conservatively large for common images),
and then gradually use steepest gradient descent to optimize them
towards smaller values. The iteration is terminated when one of the
following conditions is satisfied:

(i) The gradient descent converges.
(ii) The graph turns into a non-connected graph when graph edge

weights are W.

Since we will use diffusion technique for saliency detection,
condition (ii) is essential so that energy of seeds can be success-
fully passed to unlabeled nodes. In our implementation, (ii) is
checked by examining whether the second smallest eigenvalue of
graph Laplacian matrix L¼D�W is below a small threshold
(10�3). The rationale behind is that the multiplicity of zero
eigenvalues of L equals the number of connected components in
a graph [44]. In most cases, we find condition (ii) is reached prior
to condition (i). It is worthy noting that although our method
involves an initial value σ0, this parameter can be set to a
conservative value. Hence, the method is not sensitive to this
initial value when using the optimized σ for the diffusion. Fig. 3
shows an example of determining the affinity matrix W.

3.3.3. The closed-form diffusion process
Given a graph G¼ ðV ; EÞ with adaptively determined A and W,

we define the diffused energy s by minimizing:

arg min
s

μ
Xn
i ¼ 1

kiðsi�yiÞ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
weighted fitness term

þ
Xn
i ¼ 1

X
j;j � i

1
2
wijðsi�sjÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

manifold smoothness

þλ
Xn
i ¼ 1

ðsi�
X
j;j � i

aijsjÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
manifold reconstruction

ð6Þ

where λZ0, μ40 are balancing weights. si; yi are the ith elements
of s and y (y is a pre-defined seed vector, see also (1)), respectively,
and ki40 is the weighting coefficient for the ith node.
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Fig. 4. The block diagram of the proposed two-stage saliency detection scheme MPDS that utilizes MPD. In the top line, “t,b,l,r” are short for “top, bottom, left, right”,
respectively; In the middle line, boosted Harris corners are shown as yellow dots. After removing corners closed to image boundary, there remain 22 corners; In the third
line, yellow circles indicate the range of focus of attention [48] and their centers (red dots) are foci locations. Operation “þ” stands for superpixel-wise “or” and “�” stands
for superpixel-wise multiplication. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

K. Fu et al. / Neurocomputing 175 (2016) 336–347340
In (6), the first term is related to the fitness that the diffused
energy s fits to the original seed y [29,31]. The second term is the
penalty to enforce the manifold smoothness assumption so that
the diffused energy s varies smoothly on the manifold [31,29], or,
nodes connected by large weights wij should have similar diffusion
labels. The third term is the penalty to enforce the local recon-
struction assumption where the diffusion energy is assumed to
maintain on the same manifold as in the initial feature space (i. e.
sharing the same reconstruction weights). The underly assumption
is that there exists a local linear mapping from the feature space to
the diffused energy space, si ¼ cT f iþb, where c and b are the
vector and bias in the linear model. If f i ¼

P
j;j � iaijf j, then si ¼P

j;j � iaijsj holds. Such a linear model assumption is similar to that
in [45] though the latter is used globally, and also in image matting
[46] and filtering [47]. In contrast, the assumption here is used
differently as the penalty to enforce the local reconstruction
assumption on the manifold-based diffusion and jointly employed
with the other two terms to preserve the manifold structure.
Furthermore, the proposed manifold reconstruction method is
related to the linear neighborhood propagation [33] in semi-
supervised learning.

Recall aij=wij between non-connected nodes are zeros. Equation
(6) then can be rewritten equivalently in a matrix form as

arg min
s

μðs�yÞTKðs�yÞþsTLsþλðs�AsÞT ðs�AsÞ ð7Þ

where L¼D�W is the Laplacian of the graph, D is the diagonal
degree matrix of W, and K is an n� n diagonal weighting matrix
(usually set to I or D. We chose K¼D). By taking the derivative on
(7) and setting it equal to zero, the following solution for the
diffused energy is obtained:

s¼ ½μKþLþλðI�AÞT ðI�AÞ��1Ky ð8Þ
Comparing with (1), it is easy to see that An ¼ ½μKþλðI�AÞ
TðI�AÞþL��1K. Noting that with μ40 and λZ0, An ¼ μKþλ
ðI�AÞT ðI�AÞþL is invertible since both L and ðI�AÞT ðI�AÞ are
semi-positive definite, and K is positive definite. Hence, to this
end, we obtain (8) as the closed-form solution to the diffusion
process and can be used for the subsequent saliency detection.

3.4. Manifold-preserving diffusion-based saliency (MPDS)

In this section, a two-stage detection scheme is proposed,
referred to as manifold-preserving diffusion-based saliency (MPDS),
to leverage the proposed MPD for saliency detection. Boundary
prior, Harris convex hull, and foci convex hull are incorporated
during the coarse saliency map estimation. The block diagram of
the scheme is shown in Fig. 4. For the boundary prior, by speci-
fying each image border as the background seeds, MPD is used to
perform diffusion and generate four intermediate saliency maps.
After the linear integration of four maps, the obtained map is
incorporated with the binary mask generated by the Harris convex
hull and the foci convex hull (see the “Combinatorial mask” in
Fig. 4). More specifically, two binary masks are first generated
separately from the Harris convex hull and the foci convex hull.
Masking values of superpixels inside each hull are set to 1, and
those of superpixels outside each hull are set 0. Then, the two
binary masks are combined by superpixel-wise “or” operation
(denoted as “þ” in Fig. 4). Saliency values of superpixels outside
this combined mask are cropped by superpixel-wise multi-
plication (denoted as “�” in Fig. 4), resulting in a coarse saliency
map in the first stage. In the second stage, we use Ostu's method
[49] to adaptively select an initial foreground region that tends to
include salient objects. MPD is then utilized again for diffusion
from the initial foreground region, resulting in a final saliency map
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that emphasizes an entire salient object. Below, details of the three
parallel processes in Fig. 4 are described.

Boundary prior: Image borders are usually considered as the
background. For four image borders, four seed vectors yt , yb, yl, yr

are specified, respectively (where the superscript “t; b; l; r” indi-
cates “top, bottom, left, right”, respectively). Taking the case of the
upper border as an example, the component in yt is set to 1 if the
corresponding suerpixel touches a margin of 5-pixels near upper
image border, and is set to 0 otherwise. In a similar way, yb; yl;yr

can be set. Let An be the propagation matrix (see (8)), an inter-
mediate saliency map that is based on the boundary prior is
defined as

sin ¼
X

oA ft;d;l;rg
f1�N ðAnyoÞg ¼ 4�

X
oA ft;d;l;rg

N ðAnyoÞ ð9Þ

where N ð�Þ is a normalization operator that scales a map to [0,1],
1�N ð�Þ reverses the map as the diffused energy indicates the
likelihood to be the background. Noting that the integration of
four maps is motivated by [26], however, we use the linear inte-
gration instead of multiplication. The rationale is that multi-
plication can easily cause an object heavily suppressed if it touches
any image border. Intuitively, the linear integration is more con-
servative, since it links with the phenomenon that the fewer bor-
ders that an object touches, the more salient the object is.

Harris convex hull: Boosted Harris corners are used in the
scheme to generate the Harris convex hull in each given image. We
use 30 corners to specify a coarse coverage of objects. After
removing corners that are fairly close to image borders (again in a
margin of 5 pixels near image borders), a convex hull is generated
to enclose all corner points. Although Harris convex hull prior was
used in [37,27,50], the Harris convex hull is employed in this paper
for a different purpose for excluding potential background.

Foci convex hull: We also employ a foci convex hull based on an
attention map predicted by some eye-fixation model (e. g. [48,3]),
in order to compensate the possible failure of Harris convex hull
for covering parts of an object. Our motivation of exploiting the
attention model is that it tends to be selective and often detects
salient corners/edges of object [1]. Thereby a convex hull that
encloses all foci points has a high probability to cover a salient
object. We choose the standard Itti's model [48] to produce an
attention map. A typical ten foci points are sampled from the
attention map similar to that in [48], where the foci radius is set to
1/6 of the minimum dimension of image (to emulate the
inhibition-of-return behavior of human eyes). A foci convex hull is
then generated similarly as the Harris convex hull (Fig. 4). The foci
convex hull is used jointly with the Harris convex hull to cover
salient objects robustly, meanwhile exclude irrelevant background.
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Fig. 5. An example showing deficiency of the precision–recall curve. Though our
method produces a saliency map much closer to the binary ground truth than GMR
[26], the precision–recall curve hardly reflects such fact. In contrast, a large dif-
ference on Fwβ is observed.
4. Experimental results and performance evaluations

4.1. Setup

We use n¼400 superpixels for an input image. There are three
important parameters in our MPD scheme, i. e. μ, λ and initial σ0,
which are empirically set. First, σ0 is conservatively set to 20 for
un-normalized CIELab color space, which we find suitable for most
images. The terminating conditions in Section 3.3.2 then can be
reached usually in fewer than 100 iterations. μ for the data term
can be set to a small number [29,30], and we use μ¼ 0:01. A
relatively complicated parameter is λ, which controls the power of
local reconstruction penalty. In practice, we use λ¼ 0:1 for all tests.

4.2. Evaluation metrics, methods for comparison, and datasets

The performance evaluation is conducted using three metrics:
(a) Precision–recall curve is defined as (the same as in
[12,13,15,26,21,1]):

PrecisionðTÞ ¼ jMðTÞ \ Gj
jMðTÞj ; RecallðTÞ ¼ jMðTÞ \ Gj

jGj ð10Þ

where M(T) is the binary mask obtained by directly thresh-
olding a saliency map (denoted as Smap) using threshold T, G is
the ground truth map having the same size as Smap, and j � j is
the total area of a mask.

(b) Mean Absolute Error (MAE) is defined as (the same as in
[22,15]):

MAE¼ 1
W � H

XW
x ¼ 1

XH
y ¼ 1

jSmapðx; yÞ�Gðx; yÞj ð11Þ

where Smapðx; yÞ is the saliency value and Gðx; yÞ is the ground
truth value at the spatial location (x,y), W and H are the width
and height of the map Smap, respectively.

(c) Weighted F-measure Fwβ is adopted from the recently proposed
definition in [51]:

Fwβ ¼ ð1þβ2ÞPrecisionw � Recallw

β2 � PrecisionwþRecallw
ð12Þ

where Precisionw and Recallw are the weighted precision and
recall.

The main difference between (10) and (12) is that Precisionw and
Recallw in (12) can directly compare a non-binary map against a
binary ground truth without thresholding. As demonstrated in
[51], the weighted F-measure ðFwβ Þ gives more reliable evaluation
that meets the human perception. Fig. 5 shows the evaluation
using the metric in (12).

Visual observation on the results in Fig. 5 shows that the pro-
posed method has generated much better performance than that
from GMR [26]. This evidence is clearly reflected on Fwβ , i. e. 0.957
versus 0.539. However, in the precision–recall curves, the differ-
ence is small. In some places, the curve of GMR even has a slightly
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better performance than our method (see the right corner of the
curve in Fig. 5). Therefore, we use Fwβ as a complementary measure
to (10). We use the evaluation code from 〈http://cgm.technion.ac.
il/Computer-Graphics-Multimedia/Software/FGEval/〉, where β2 ¼
1 is set without bias between the precision and the recall.
Although β2 ¼ 0:3 is suggested in [12] to weigh the precision more
than the recall, it is shown in [51] that the overall evaluation of a
saliency detection method should dedicate to applications. View-
ing that in applications such as using saliency detection to guide
object detection, the recall appears more important than the
precision. In addition, the reason for setting β2 exactly to 0.3 is not
clearly stated in [12]. Therefore, we decide to set β2 ¼ 1 without
bias between the precision and recall. Note that β2 ¼ 1 is also used
in [52] for evaluation on saliency detection. Among the above
three metrics, a high precision–recall curve, low MAE, and high Fwβ
indicate a good saliency model.

We compare MPDS with 8 recent state-of-the-art methods
which output real-valued saliency maps including: CB (Context-
Based) [14], GS (Geodesic Saliency) [25], HS (Hierarchical Saliency)
[21], PCA [38], GC (Global Cue) [22], DSR (Dense and Sparse
Reconstruction) [39], GMR (Graph-based Manifold Ranking) [26],
PISA (Pixelwise Image Saliency by Aggregation). Note that we
adopt the public implementations from the original authors for all
the methods and all saliency maps are scaled into the range [0, 1]
for the unified evaluation. Although other methods exist, most of
them are not as good as the above selected methods.

Tests and comparisons were conducted on five commonly used
benchmark datasets, including MSRA-1000 [12] (1000 images),
SOD [53] (300 images), SED1 [54] (100 images), SED2 [54] (100
images), and ECSSD [21] (1000 images with complex and texture
scenes).

4.3. Validation of MPD

Firstly, we validate the impact of λ. The quantitative evaluation on
MSRA-1000 and ECSSD by varying λ from 0 to 100 is shown in Fig. 6.
One can see that incorporating the local reconstruction penalty is
helpful for improving the precision–recall curve meanwhile main-
taining similar Fwβ and MAE. However too large λ (e. g. 10 and 100) in
turn causes performance degenerated, which are reflected on all
three criteria. This is because such strong assumption on linear
model may be violated in some cases. Note the linear model may be
contradictory to the purpose of uniform enhancement. For example,
for two adjacent but distinctive regions both of which we want to
highlight uniformly (i. e. have saliency values close to 1), the linear
model may cause counteraction due to discrepancy after the same
Fig. 6. Quantitative evaluation on MSRA-1000 (left) and
linear mapping. On the other hand, such linear model can be helpful
for distinguishing object and background as long as they present
different features, i. e. f i. Fig. 7 shows such changes visually. By
considering local reconstruction, large areas on objects tend to be
well highlighted since the saliency of a node (i. e. superpixel) which
lies inside can be better reconstructed due to large amount of similar
neighbors. From both λ¼ 0 and 100, complementary effect can be
observed. Since λ¼ 0:1 is found generating fairly good results in
Figs. 6 and 7, we use it for all the tests.

We also show MPD is better than GMR [26] when applied to
saliency detection. To validate this, we compare MPD with GMR
under the same configuration, namely by applying MPD and GMR
to the same graph structure used in this paper and also to the
same seeds. We conducted two experiments. The one was by
diffusion from four image borders followed by linear integration,
yielding to sin in the top line in Fig. 4. The other is by diffusion
from given ground truth masks, which provides an intuitive esti-
mation of performance upper bound. Fig. 8 shows the diffusion
evaluation on MSRA-1000 and ECSSD. It is obvious that MPD
achieves better performance in terms of all three criteria. The
difference on Fwβ is even more significant than that on the preci-
sion–recall curves. The reason for this has been demonstrated in
Section 4.2. The better results on diffusion from ground truth
reveal that the proposed MPD guarantees a higher upper bound
(6.7% gain on MSRA and 8.3% gain on ECSSD in terms of Fwβ ) than
GMR, which allows more potential space for future improvement.
Recall that the major differences between MPD and GMR lie In:
(1) MPD estimates A and W adaptively whereas GMR uses
manually determined σ forW; (2) MPD applies the additional local
reconstruction assumption as compared to GMR. Another phe-
nomenon indicated in Fig. 8 is that compared to dataset MSRA-
1000, the margin between the detection performance and the
upper bound on dataset ECSSD is much larger. This implies ECSSD
is much harder than MSRA-1000 for saliency detection, and there
is more space for further improvement.

4.4. Validation of individual components

To evaluate the effectiveness of using Harris convex hull and
foci convex hull, experiments were conducted on MSRA-1000
dataset by ablating these two components from our full imple-
mentation in Fig. 4. Results are shown in Fig. 9. One can see from
Fig. 9 that the performance without both hull priors degenerates
in a noticeable margin. Incorporating either hull prior leads to a
performance boost. Additionally, removing Harris convex hull
influences the overall performance more than removing the foci
ECSSD datasets (right) by tuning λ from 0 to 100.

http://cgm.technion.ac.il/Computer-Graphics-Multimedia/Software/FGEval/
http://cgm.technion.ac.il/Computer-Graphics-Multimedia/Software/FGEval/


Fig. 7. Visual impact of parameter λ. Moderately incorporating λ can emphasize an entire salient object and avoid over-suppressing in cluttered background.

Fig. 8. Diffusion evaluation between MPD and GMR [26] on MSRA-1000 (left) and ECSSD (right) datasets.

Fig. 9. Validation of Harris convex hull and foci convex hull on MSRA-1000 dataset.
The performance by using a single σ for all feature dimensions is also compared.
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convex hull, indicating that Harris hull is more informative. Fur-
ther incorporating foci convex hull with Harris convex hull as
shown in Fig. 4 slightly enhances the final performance.

Besides, we also compared using a single σ for all feature
channels to using different σ, i. e. fσ ¼ σ1;…;σdg. Note that if a
single σ is used in (4), the solution to (5) can also be obtained
through gradient descent. As shown in Fig. 9, allowing σ to vary (i.
e. the full implementation) leads to only marginal improvement
comparing to using a single σ, though the difference between
these two cases is expected to be large. Intuitively fσ ¼ σ1;…;σdg
enables weighing different feature channels adaptively. We find
the factors causing this phenomenon are twofold. Firstly, on some
images the both cases will lead to similar σ when gradient descent
stops. For example in Fig. 3, the result of using a single σ is 15.87,
and it is similar to fσ ¼ 12:92;15:55;16:94g. Secondly, the two-
stage scheme in Fig. 4 could also reduce the overall impact of σ.
4.5. Comparisons to state-of-the-art methods on saliency detection

The performance of the proposed saliency detection scheme is
further examined by comparing with 8 recent state-of-the-art
methods. Fig. 10 shows the results from the quantitative compar-
isons. To facilitate comparisons, MAE values are sorted in des-
cending order and Fwβ are sorted in ascending order. Several
interesting observations can be found from Fig. 10. Firstly, from
precision–recall curves, one can see that our method, namely
MPDS, achieves comparable precision to the existing methods
under the same recall. Noticeable improvement over the HS, DSR,
and PISA methods can be observed on the datasets MSRA-1000
and SED1, whereas on the rest datasets, DSR, HS, GMR, PISA, and
the proposed MPDS perform similarly.

Secondly, since precision–recall curves do not reflect the
highlight level of a whole object (see Fig. 5), the proposed method
consistently achieves much smaller MAE and higher Fwβ over most
of the compared methods, indicating that MPDS is more capable of
enhancing a salient object holistically. This is mainly due to the
proposed diffusion method which preserves manifold structure by
employing penalty terms to enforce smoothing and local recon-
struction assumptions. Fig. 11 shows visual results from the pro-
posed method and from these 8 methods. From Fig. 11, one can see
that the proposed saliency detection scheme can effectively sup-
press the background clutter and uniformly enhance the fore-
ground objects. Comparing with the remaining methods such as
GMR and PISA, results from the proposed method are visually
closer to the ground truth and maintains much clearer object
boundaries.

Some intermediate results from individual steps of the pro-
posed scheme are shown in Fig. 12. Observing Fig. 12(f), i. e., the
results of integrating four boundary specified saliency maps in the
first stage, the proposed method is shown to be able to coarsely
highlight the salient regions in an image. Subsequent combination
with two convex hull priors and Ostu's thresholding (Fig. 12(i) and
(j)) provide more informative initialization to the second stage.



Fig. 10. Quantitative evaluation by precision–recall curves (left), mean absolute error (MAE, middle), weighted F-measure (Fwβ , right) on five benchmark datasets. From top to
bottom are MSRA-1000, ECSSD, SOD, SED1, and SED2. The proposed method is highlighted by black arrows in the middle and right sub-figures.
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Fig. 11. Visual comparisons. The abbreviations of the methods are listed in Section 4.2.
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Background regions with low saliency are discarded. Conse-
quently, good results of final saliency maps (Fig. 12(k)) from the
proposed method are observed.
5. Conclusion

In this paper, the proposed novel diffusion scheme called
manifold-preserving diffusion (MPD), which uses penalty terms
for jointly enforcing the manifold smoothness and the local
reconstruction assumptions, has been tested and shown to be
effective. The affinity matrix and the reconstruction matrix of the
graph in MPD are both determined adaptively. This reduces the
required manually turning parameters and enhances the adapt-
ability of diffusion on different images. Experimentally, MPD per-
forms better than manifold ranking when using image boundary
as seeds and guarantees a higher performance upper bound. This
is probably attributed to introducing penalty terms in both
assumptions and also to adaptive weight construction. The pro-
posed two-stage detection scheme (MPDS) by utilizing MPD is also
tested. By integrating boundary prior, Harris convex hull and foci
convex hull in the scheme, the proposed MPDS maintains com-
parable performance on precision–recall curves, meanwhile
reaches the lowest mean absolute error and the highest weighted
F-measure when compared to 8 recent state-of-the-art saliency
models. Further works include exploiting MPD in other computer



Fig. 12. Visual comparisons of individual steps in our method. (a) Input image. (b)–(e) Diffusion from top, down, left and right image borders, respectively and then reverse.
(f) Linear integration ðsinÞ. (g) Binary mask by Harris convex hull. (h) Binary mask by foci convex hull. (i) Coarse saliency map of stage 1. (j) Initial foreground map. (k) Final
saliency map of our saliency detection scheme after stage 2. (l) Ground truth.
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vision areas that call for diffusion, and other cost functions for
adaptive edge weights.
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