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a b s t r a c t 

Many salient object detection methods first apply pre-segmentation on image to obtain over-segmented 

regions to facilitate subsequent saliency computation. However, these pre-segmentation methods often 

ignore the holistic issue of objects and could degrade object detection performance. This paper proposes 

a novel method, spectral salient object detection , that aims at maintaining objects holistically during pre- 

segmentation in order to provide more reliable feature extraction from a complete object region and 

to facilitate object-level saliency estimation. In the proposed method, a hierarchical spectral partition 

method based on the normalized graph cut (Ncut) is proposed for image segmentation phase in saliency 

detection, where a superpixel graph that captures the intrinsic color and edge information of an im- 

age is constructed and then hierarchically partitioned. In each hierarchy level, a region constituted by 

superpixels is evaluated by criteria based on figure-ground principles and statistical prior to obtain a re- 

gional saliency score. The coarse salient region is obtained by integrating multiple saliency maps from 

successive hierarchies. The final saliency map is derived by minimizing the graph-based semi-supervised 

learning energy function on the synthetic coarse saliency map. Despite the simple intuition of maintain- 

ing object holism, experimental results on 5 benchmark datasets including ASD, ECSSD, MSRA, PASCAL-S, 

DUT-OMRON demonstrate encouraging performance of the proposed method, along with the compar- 

isons to 13 state-of-the-art methods. The proposed method is shown to be effective on emphasizing 

large/medium-sized salient objects uniformly due to the employment of Ncut. Besides, we conduct thor- 

ough analysis and evaluation on parameters and individual modules. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Studies from neurobiology and cognitive psychology indicate

hat human brains are capable of selecting a certain visual con-

ents for further processing [1,2] . Modeling human bottom-up

isual attention on images, referred to as bottom-up saliency

etection , is aimed at detecting salient image parts that can easily

ttract human attention. Bottom-up saliency detection has gained

ncreasing research interest recently. Under this theme there are

wo sub-types [3,4] , namely eye fixation modeling [4–7] and salient

bject/region detection [3,8,9] . In this paper, we address the second

ype. The recent advance in salient object detection is driven by

igh-level applications such as automatic object segmentation

10,11] , content-aware image editing [12–15] and retrieval [16,17] . 

Many existing methods for salient object detection in still im-

ges, e.g., [9,18–21] essentially employ certain pre-segmentation

echniques. Resultant regions/superpixels are then considered as
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asic processing units and fed into saliency computation. This

ean not only facilitates computation but also avoid pixel-level

oise. Typical techniques include clustering-based segmentation

e.g., Meanshift [22] , SLIC superpixels [23] ), or merging-based

egmentation (e.g., graph-based [24] ). Unfortunately, since these

ethods are based on local image properties, they could result

n highly over-segmented regions, where an object breaks up into

mall regions that ignore the holistic object. Such regions not only

asily introduce noise, but also keep one from assessing the object

s a whole entity ( Fig. 1 ). As a salient object detection method is

imed at emphasizing the entire object uniformly in the resultant

aliency map [3] (the ground truth in Fig. 1 ), a pre-segmentation

hat is consistent to the human visual perception and retains holis-

ic object, intuitively, can contribute to more accurate saliency es-

imation. Retaining holistic object allows more reliable feature ex-

raction and analysis such as colors, shapes and texture from a

omplete object region. 

Segmenting complete regions of arbitrary objects in a pre-

egmentation stage is a very challenging task. This is because

he task of saliency detection aims at detecting generic arbitrary
l salient object detection, Neurocomputing (2017), 
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Input image

Ground truth 
salient object

Typical pre-segmenta�on techniques used by exis�ng methods

Graph-based [24]   SLIC superpixels [23]  Meanshi� [22]

Hierarchical Ncut pre-segmenta�on used in this paper

Hierarchy 1 Hierarchy  2  3Hierarchy

Fig. 1. Comparison between several commonly used segmentation methods and the proposed Ncut-based pre-segmentation. Row-1 (columns 2–4): graph-based segmenta- 

tion [24] , SLIC superpixels [23] , and Meanshift segmentation [22] ); Row-2 (columns 2–4): results from three hierarchies from the proposed method, where different segments 

are assigned with different colors. The parameters of the graph-based segmentation [24] were chosen in a similar way as in [9] . About 200 SLIC superpixels [23] were gen- 

erated similar to [20,21] . The parameter setting of Meanshift [22] is similar to [8] . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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objects which human eyes attend. Therefore, specifying category-

dependent prior to assist segmentation is not feasible. To remedy

this, we propose to utilize a spectral partition technique—the nor-

malized graph cut (Ncut) [25] for salient object detection, because

Ncut is unsupervised and shows more agreement to we human

perception. As written by Shi and Malik [25] , “Rather than focusing

on local features and their consistencies in the image data, Ncut

aims at extracting the global impression of an image”. In this pa-

per, we propose a hierarchical spectral partition method for the

segmentation phase of saliency detection. The proposed method

uses a superpixel graph to capture the intrinsic image color and

edge information, and is based on the following observations:

(a) Ncut has a strong discriminative power to separate image

contents in object-level because it is a global criterion. It has

hence the potential to maintain object holism and return complete

boundary of an object ( Fig. 1 ). (b) A salient object often has some

unique appearance in terms of color or texture as comparing to its

surroundings, implying some visual dissimilarity [5,9] . Therefore, a

complete boundary of object is preferred by Ncut. A very low Ncut

cost is often achieved if an entire object is separated from the re-

maining image. 

Although Ncut has been widely used for image segmentation

[25–27] , applying it for inducing saliency computation and hence

saliency maps is not well-studied. Furthermore, the aim of im-

age segmentation is different from that of salient object detec-

tion, and hence, using Ncut solely is not adequate for render-

ing a saliency map. To further address this issue, we incorporate

Ncut with several regional saliency metrics. Some other works

[9,10,20,28,29] append graph cut to saliency maps as a second

stage to achieve figure-ground segmentation. Our method differs

from theirs since we firstly use Ncut to retain object holism prior

to saliency computation, whereas [9,10,20,28,29] do not preserve

object holism during saliency detection and might achieve less

satisfactory saliency maps. In this paper, we believe conducting

saliency detection on holism-retained segmentation could lead to
 s  

Please cite this article as: K. Fu et al., Spectra
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etter detection accuracy. Besides, the proposed method differs ob-

iously from the above methods on technical aspects as well as

mplementations. The main novelties of this paper are summarized

elow: 

1. For maintaining the holism of objects, Ncut is employed for

separating salient image contents, where a novel hierarchical

spectral partition method is introduced for pre-segmentation.

It partitions a superpixel graph that captures the intrinsic color

and edge information in an image. A binary segmentation tree

is later generated, where an entire object is likely to be retained

in emerging hierarchies. 

2. For modeling image saliency in different hierarchies, Ncut is

incorporated with regional saliency metrics. Three regional

saliency metrics are introduced based on figure-ground princi-

ples and statistical prior. Salient objects are enhanced by inte-

grating intermediate saliency maps from successive hierarchies.

3. Despite the simple intuition of maintaining object holism, we

show that the proposed method achieves state-of-the-art per-

formance on 5 benchmark datasets. Parameters of the proposed

method are evaluated both quantitatively and comprehensively.

Although part of our work is published in the conference paper

30] , this paper has significantly extended and improved our pre-

ious work, where we incorporate additional edge term in graph

ffinity computation, employ constrained Ncut for the first hierar-

hy for better cut initialization, and also conduct thorough eval-

ation on parameters and modules. In addition, more technical

etails and further extensive test results on objects in complex

ackground are included. 

The reminder of the paper is organized as follows.

ection 2 describes the related work on salient object detec-

ion. Section 3 briefly reviews the fundamental of normalized

raph cut, upon which our proposed method is built. Section 4 de-

cribes the proposed method in details. Experimental results,
l salient object detection, Neurocomputing (2017), 
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erformance evaluation and comparisons are then included in

ection 5 . Finally, conclusions are drawn in Section 6 . 

. Related work 

Early methods on bottom-up salient object detection are based

n the assumption that salient objects are unique in color and

resent high color contrast to the rest parts of an image. Cheng

t al. [9] propose a regional saliency measure as the color his-

ogram contrast to other regions. Perazzi et al. [20] formulates

omplete contrast and saliency estimation using high dimensional

aussian filters. Fu et al. [18] detect salient objects by superpixel-

ased color contrast and color distribution, which are non-linearly

ntegrated to achieve complementary performance. Shen and Wu

19] solve the saliency detection issue as a low rank matrix re- 

overy problem, where salient objects are represented by a noisy

parse matrix while the background is indicated by a low rank

atrix. Wang and coworkers [31] compute the pixel-wise image

aliency by aggregating complementary appearance contrast mea-

ures with spatial priors. Margolin et al. [32] define the distinct-

ess of patches as L1-norm in PCA coordinates and combine it with

olor distinctness. Li et al. [33] model patch saliency by dense and

parse reconstruction errors, where the dictionaries for reconstruc-

ion are obtained from image boundary. 

Graph representation is recently used for rendering image

aliency. Based on the graph, characteristics of salient objects, such

ike high color contrast to surroundings, compact color distribu-

ion, connectivity to image borders, are modeled. Gopalakrishnan

t al. [34] perform random walks on graphs to find salient objects.

ei et al. [35] propose to treat boundary parts of an image as

he background. The patch saliency is defined as the shortest

eodesic distance on a graph to image boundary. Yang et al.

21] use four image borders as seeds and propagate saliency by

raph-based manifold ranking. Fu et al. [36] propagate saliency

nergy from a coarse energy map based on geodesic distance. Zhu

t al. [37] propose a saliency detection method based on robust

ackground estimation. Gong et al. [38] propose a new saliency

ropagation algorithm employing the teaching-to-learn and

earning-to-teach strategies to explicitly improve the propagation

uality. More recently, Zhang et al. [39] perform saliency detection

ased on minimum barrier distance and show its robustness over

he extensively used geodesic distance. Fu et al. [40] propose a

anifold-preserving graph-based diffusion technique and apply it

o saliency diffusion. Li et al. [41] propose to locate coarse saliency

egions by fixation prediction and later refine the results by a

ulti-layer graph-based algorithm. 

While the above works are unsupervised saliency compu-

ational models, other methods estimate object saliency by

upervised learning resorting to human annotations. Liu et al.

42] segment salient objects by learning and inferencing a con-

itional random field (CRF). Jiang et al. [43] use a random forest

egressor to map multiple features to a regional saliency score.

ai et al. [44] propose a data-driven approach for aggregating

ixel-level saliency maps. Tong et al. [45] use bootstrap learning

o enhance the detection performance. [46] proposes a salient

bject detection system via proposal subset optimization. The

ptimization framework is based on maximum a posteriori prin-

iple and outputs a compact set of proposal windows containing

alient objects. Wang et al. [47] propose correspondence saliency

ransfer, where initial saliency is obtained by transferring salient

egion masks of support images from a large reference dataset

nd later refined via random-walk-with-restart algorithm. Qi et al.

48] incorporate the global restricted Boltzmann machine (RBM)

ith local conditional random field (CRF) into a unified framework

nd learn to infer image saliency cues. Recently, deep learn-

ng and convolutional neural networks (CNN) are employed
Please cite this article as: K. Fu et al., Spectra
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49–51] . Their strong power over traditional super-

ised/unsupervised saliency models is witnessed. Note that

here also exist other saliency works which focus on different

elds, such as co-salient objects detection [52–54] , video and

vent saliency discovery [55–57] , but these are beyond the scope

f this paper. 

Most of the above methods focus on developing novel saliency

omputation methods either on pixel level, superpixel level, or re-

ion level, but does not explicitly consider whether these compu-

ational units could reflect the global meanings and object holism.

everal more closely related studies to our work are [58–60] . The

ork of Yan’s [58] and Cheng’s [59] also focus on generating good

egmentation/abstraction in multi-scales. Yan et al. [58] propose

 hierarchical saliency detection method that merges regions ac-

ording to user-defined scales to eliminate small-sized distracters.

heng et al. [59] measure the saliency based on a hierarchical soft

bstraction, that includes a pixel layer, a histogram layer, a Gaus-

ian Mixture Model layer and a clustering layer. Liu et al. [60] pro-

ose saliency tree as an enhancement on an initial saliency map

omputed on primitive regions. As comparison to their methods,

ur method is different from [58–60] on motivations. We use the

ormalized graph cut to retain objects holistically for enhancing

he saliency detection, whereas works in [58–60] are based on the

ocal merging or clustering. Besides, a graph is even not explicitly

sed in [58–60] . As reported in Section 5.3 , we achieve better ac-

uracy for salient object detection than [58–60] . 

As aforementioned in Section 1 , there are some previous litera-

ures [9,10,20,28,29] involving both the graph cut and saliency de-

ection, where the graph cut usually serves as a post-processing

i.e., applied to the outcome of saliency detection to achieve a bi-

ary segmentation). The main difference in the proposed method

s that we utilize Ncut to enhance saliency detection. In the pro-

osed method, the Ncut is applied prior to the saliency detection,

nd hence can augment the resulting saliency maps. 

. Reviews of normalized graph cut 

This section briefly reviews the theory of normalized graph cut

Ncut). Ncut proposed by Shi and Malik [25] normalizes the cost

f graph cut by using the total edge connection towards all nodes

n a graph. Let a similarity graph (whose edge weights measure

he similarity between vertices) be defined as G = (V, E) , W be the

ffinity matrix of G (i.e., similarity matrix), D be the degree matrix

f G (a diagonal matrix with diagonal entry d i = 

∑ 

j w i j , where w ij 

s entry of W ). The purpose of Ncut is to find a cut that partitions

 into two vertex sets A and B (s.t. A 

⋃ 

B = V, A 

⋂ 

B = ∅ ) such that

he following cost is minimized: 

cut(A, B ) = 

cut(A, B ) 

assoc(A, V ) 
+ 

cut(A, B ) 

assoc(B, V ) 
(1) 

here cut(A, B ) = 

∑ 

u ∈ A, v ∈ B e (u, v ) is the total weight of edges

onnecting A and B , the association assoc(A, V ) = 

∑ 

u ∈ A, t∈ V e (u, t)

s the total weight of edges between A and all nodes (i.e., V ) in the

raph, assoc ( B, V ) is similarly defined. The rationale behind using

cut is to minimize the similarity between A and B . Shi and Malik

25] show that minimizing Ncut ( A, B ) is equivalent to minimizing

he following energy function: 

(y ) = 

y T (D − W ) y 

y T Dy 
(2) 

here y is a discrete indication vector under the constraint y T D1 =
 (where 1 is the vector of ones). The exact solution to (2) is

P hard [25] . However a continuous approximation of y can be

btained as the eigenvector associated with the second smallest

igenvalue of the following generalized eigen-system: 

(D − W ) y = λDy (3)
l salient object detection, Neurocomputing (2017), 
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Final saliency map

Graph 
construc�on

Superpixels

Edge detec�on

Input image

Color affinity

Edge affinity

Hierarchical spectral par��on and simultaneous saliency es�ma�on

Saliency 
aggrega�on

Graph-based 
semi-supervised 
learning

Fig. 2. The block diagram of the proposed method. 
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where y and λ are the eigenvector and eigenvalue, respectively. It

is worthy noting that since Ncut [25] deploys the smallest eigen-

vectors (i.e., eigenvectors corresponding to smallest eigenvalues) to

perform graph partition, it is known as a spectral partition tech-

nique and is quite popular (has over 10K Google citations). 

As described previously, the Ncut partitions a graph into two

parts in a normalized discriminative fashion. We adopt Ncut for

saliency detection as it is expected to generate better segmenta-

tion hypotheses for salient object detection as comparing with the

clustering-based or merging-based segmentation. 

4. The proposed method 

In this section, we describe the proposed method for salient

object detection that integrates hierarchical spectral partition and

saliency estimation. The block diagram of the proposed method

is shown in Fig. 2 . For each input image, we first decom-

pose it into superpixels and simultaneously perform edge detec-

tion. We then use superpixels as vertices to construct a graph

that captures intrinsic colors and edge information of an image

( Section 4.1 ). Hierarchical spectral partition that is aimed at re-

taining the entire object is applied to the graph ( Section 4.2 ),

meanwhile saliency estimation is carried out on successive hi-

erarchies ( Section 4.3 ). The resultant intermediate saliency maps

are integrated/aggragated and then refined by graph-based semi-

supervised learning ( Section 4.4 ), yielding to a final saliency map. 

4.1. Graph construction 

Instead of conducting Ncut on a pixel graph [25] , we choose to

construct a superpixel graph that increases the efficiency and fa-

cilitates the subsequent saliency estimation. An image is first seg-

mented into N SLIC superpixels [23] , since SLIC method produces

a more regular lattice and therefore is suitable to build a graph.

Note that more recent superpixel generation algorithms such as

in [61] may also be employed. Next, we construct an initial graph

G = (V, E) whose vertices V constitute of all the superpixels, and E

is a set of graph edges. Hereafter, notation v i refers to the i th “su-

perpixel”, or “graph vertex”, where “node” and “vertex” are used

interchangeably in the remaining text. Let e ij ∈ E denote the graph

edge between v i and v j . The corresponding affinity weight of the

edge is denoted as w ij . In the proposed method, a superpixel is

connected to its spatially adjacent superpixels to form graph edges.

Additionally, each pair of boundary superpixels (i.e., superpixels

that touch image boundary) are connected to each other, similar

to the close-loop graph in [21] . Different from existing methods

[21,37] that only consider colors of superpixels, the graph in the

proposed method captures both color and edge information. Our
Please cite this article as: K. Fu et al., Spectra
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ffinity matrix W = [ w i j ] N×N is defined as: 

 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

√ 

S color 
i j 

· S 
edge 
i j 

if v i , v j are spatially adjacent 

S color 
i j 

else if v i , v j ∈ B 

0 otherwise 

(4)

here B denotes the set of boundary superpixels. The color affinity

 

color 
i j 

and the edge affinity S 
edge 
i j 

are defined as: 

 

color 
i j 

= exp (−λc || c i − c j || ) 
 

edge 
i j 

= exp (−λe max i ′ ∈ ̄i j || f i ′ || ) 
(5)

here c i and c j are averaging CIELab colors in v i and v j , ī j is

 straight line connecting centers of two superpixels on the im-

ge plane, i ′ is an arbitrary pixel on ī j , || f i ′ || refers to the edge

agnitude at i ′ that can be derived from an edge detector [62] ,

nd λc and λe are parameters controlling the damping rate of the

wo terms. Using (4) , large color difference and strong intervening

mage edges between two superpixels would lead to small graph

ffinity, meaning they are less likely to belong to the same region.

t is worthy noting that in practice although most superpixels in

n image have their centers inside due to the compactness nature

f SLIC superpixels [23] , there may be few superpixels whose cen-

roids are located out of them, resulting in less accurate interven-

ng edge cue. Hence for such a case, a pixel location is sampled

andomly inside each superpixel, and is used instead of the cen-

roid to compute the edge affinity. Fig. 3 shows an example of su-

erpixels, edge detection and local graph connection. 

.2. Hierarchical spectral partition 

In this section, we describe the proposed hierarchical partition

ethod in detail. Once the graph affinity matrix W is obtained,

e form the 1st hierarchy by applying the spectral partition tech-

ique, namely Ncut to G to divide the superpixels into two seg-

ents. Since the subsequent partitions will be based on the first

ierarchy, here we introduce the constrained Ncut [63] which en-

bles grouping priors, to provide us a good partition initialization.

ased on the fact that image boundary nodes are likely to be back-

round, a prior is incorporated here which intends to group bound-

ry nodes into one segment. To be specific, the constrained Ncut in

he first hierarchy is conducted by solving the below eigen-system:

(D − W + U�U 

T ) y = λDy (6)

here D, W, y , and λ are of the same meanings as in (3) . Given

oundary node set B , U is an N × m matrix where the m denotes

he number of “must-link” conditions [63] . Each column of U cor-

esponds to a pairwise constraint and has zero entries except for
l salient object detection, Neurocomputing (2017), 
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(a
) O

rig
in

al
(b) Superpixels (d) Local graph 

connection 

(c) Edge detector (e) Intervening
  image edges

Fig. 3. Resultant superpixels, edge detection and graph connection in the proposed method. (a) The original image; (b) contours of SLIC superpixels [23] (red) marked on 

the original image; (c) corresponding edge detection from [62] ; (d) illustration of local connections of a node, where yellow circles denote vertices and dash lines denote 

graph edges. A node is connected to its adjacent spatial neighbors; (e) The intervening edge magnitude between nodes revealing how they are likely to be in a same region. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Original Ncut GTConstrained 
Ncut Original Ncut GTConstrained 

Ncut 

Fig. 4. Example results from ASD [8] after applying Ncut and constrained Ncut to each image. The resulting segments are labeled with either red or blue. GT denotes the 

ground truth masks of salient objects. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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wo boundary nodes that are considered in a “must-link”. The en-

ries for such two boundary nodes are respectively 1/2 and −1 / 2 .

ince we need to have at least | B | − 1 conditions to glue up all

oundary nodes, m = | B | − 1 is set and the “must-links” among

oundary nodes are designed in an arbitrary sequential permuta-

ion of boundary node indexes. Meanwhile, � is a diagonal matrix

ontaining weights on its main diagonal for each of these condi-

ions and such weights can be set as a relatively large number (e.g.,

00 in practice). For more details about constrained Ncut, readers

re referred to [63] . It is obvious that constrained Ncut only adds

ittle computational load over Eq. (3) . After eigen-solving, the parti-

ion is conducted by thresholding the eigenvector corresponding to

he smallest non-zero eigenvalue of (6) . Since vertices of the graph

orrespond to superpixels, the partition of the graph yields seg-

ents constituted of superpixels. 

Some results of such partition are shown in Fig. 4 . Observ-

ng Fig. 4 , one can see applying Ncut on the constructed graph

ometimes generates two segments that keep the objects holis-

ically, making it easy for identifying salient objects. Note if the

egmentation methods [22,24] are employed to achieve equal bi-

egmentation, the involved parameters have to be carefully tuned.

n the other hand, it can be noticed from Fig. 4 that neither Ncut
Please cite this article as: K. Fu et al., Spectra

http://dx.doi.org/10.1016/j.neucom.2017.09.028 
or constrained Ncut always generate satisfactory segments, e.g.,

bjects could adjoin other background regions despite the cost of

ormalized cut (2) is minimized. Therefore, further partition is

ssential. 

Fig. 5 shows our partition strategy. Because splitting two dis-

imilar vertex sets in one segment yields a low Ncut cost com-

uted by (2) , in the next hierarchy we choose the region that

enders the lowest Ncut cost (highlighted by the red arrows in

ig. 5 ) in the previous hierarchy and further implement Ncut Eq.

3) , whose affinity matrix can be formed by taking elements in cer-

ain rows and columns of the original affinity matrix W . Gradually

s Ncut is applied multiple times, a binary structured tree is gener-

ted as shown in Fig. 5 . Note that in each hierarchy, only two new

egments are generated from the previous hierarchy. For notation

onvenience, we use R m 

n to specify a segment in the tree, indicating

hat it firstly appears in the m th hierarchy with label n . 

Stopping criterion : To retain objects holistically, an ideal time to

erminate the partition process is when entire objects are sepa-

ated from the background. Unfortunately, it is practically difficult

o obtain such a criterion due to the lack of prior knowledge as

ell as the ambiguity in the definition of what an object is. Instead

f choosing a single hierarchy level to compute the image saliency,
l salient object detection, Neurocomputing (2017), 
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Fig. 5. Hierarchical spectral partition. A segment with the lowest Ncut cost is selected from the current hierarchy (indicated by the red arrow) to continue the next partition. 

In this figure, the green solid circles indicate tree leaves (segments) generated in the current hierarchy. The red dotted circles stand for two segments generated if Ncut is 

applied. Meanwhile the cost of the Ncut is shown by the text below the red dotted circles. The entire flower, namely R 1 1 will get split in the 7th hierarchy. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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a trade-off is to use all emerging hierarchies. Without loss of gen-

erality, assuming the probabilistic occurrence of a holistic object is

equal in all emerging hierarchies, we choose to generate a fixed

number of hierarchies. The successive partition process is stopped

once a pre-determined number of “leaves” of the binary tree are

generated. 

4.3. Saliency assignment 

In this section, we describe the proposed saliency assignment

approach where segments from Ncut are incorporated with re-

gional saliency measures to model image saliency. The following

criteria are considered: 

1. Saliency measure M 1 : If treating image boundary as “pseudo

background” [21,35] , then, segments highly differentiating from

boundary superpixels of an image would be considered as more

salient. Let c m 

n denote the mean color of R m 

n . Such color differ-

ence can be measured intuitively as the discrepancy between

c m 

n and colors of all boundary superpixels [39,43] . However, we

find it difficult to suppress background regions since a back-

ground region could also have high contrast to other back-

ground regions, e.g., in the 1st image of Fig. 4 the “land” be-

hind the “jumping man” has high discrepancy from the “sky”.

To solve this, we consider only a small amount of boundary su-

perpixels that have closest colors to R m 

n . This effectively sup-

presses a segment whose color occurs frequently in boundary

superpixel set, but still can highlight a segment whose color is

distinctive from all boundary superpixels. Specifically, for a cer-

tain segment R m 

n , M 1 is definied as: 

M 1 

m 

n = 

K ∑ 

k =1 

|| c m 

n − c border 
k || 2 /K (7)

where { c border 
k 

} K 
k =1 

denote K boundary superpixel colors that are

most similar to c m 

n . For K , we use one quarter of the total num-

ber of boundary superpixels. 

2. Saliency measure M 2 : Human tend to have center bias when

viewing an image [64] . Therefore, segments near the image

center have high probability to gain more attention, i.e., being

more salient. To take into account of this, M 2 is defined as: 

M 2 

m 

n = 

1 

| R 

m 

n | 
∑ 

v i ∈ R m n 

exp 

(|| p i − p c || 2 2 /σ
2 
)

(8)

where p i is the two-dimensional location vector of superpixel

v i on the image plane, and p c is the image center, | R m 

n | is the

number of superpixels contained in R m 

n , and σ is the standard
Please cite this article as: K. Fu et al., Spectra
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deviation which is adaptively set to one third of the longest di-

mension of the input image. 

3. Saliency measure M 3 : From the figure-ground principle [65] , a

segment surrounded by other segments is likely to be perceived

as “figure”, thereby should be salient. Such “surroundedness”

means a segment should have a closed outer contour and do

not touch image borders. Let l m 

n be the number of borders that

R m 

n touches, namely l m 

n ∈ { 0 , 1 , 2 , 3 , 4 } . Considering the special

cases e.g., the half-length portrait in photography that objects

could touch one of image borders, we choose to suppress the

saliency of R m 

n if l m 

n > 1 and simply define M 3 as: 

M 3 

m 

n = 

{
0 if l m 

n > 1 

1 otherwise 
(9)

The combination of the above three hypotheses M 1 m 

n ,

 2 m 

n , M 3 m 

n starts by normalizing M 1 into interval [0,1] by consid-

ring all segments in the current hierarchy. The combined saliency

evel of a segment R m 

n is finally defined as: 

 

m 

n = M 1 

m 

n × M 2 

m 

n × M 3 

m 

n (10)

t is worth noting that besides the above three measures, we have

ried to consider other bottom-up saliency hypotheses, e.g., the

enter-surround contrast by computing the color difference of a

egment to its neighbor segments as a fourth measure. Unfortu-

ately, we find they are not as effective as the above three when

sed in our framework. One explanation may be that, for example,

enter-surround contrast is very important in other saliency detec-

ion task, e.g., eye-fixation prediction, but it has minor contribution

o our scheme which aims detecting salient objects (relatively big

n sizes). Similar observation was also reported in [43] . 

By applying the final saliency criterion (10) to all segments,

n intermediate saliency map is obtained from each hierarchy. It

s worthy noting that because only two segments are generated

n a new hierarchy and the saliency estimation ( M 1 , M 2 , M 3 ) of

egments does not involve other segments, so each intermediate

aliency map can be computed in an incremental fashion after the

rst hierarchy. Fig. 6 shows an example of different hierarchies,

nd the corresponding saliency assignment, where all intermedi-

te saliency maps are normalized into [0,1] for visualization. 

.4. The final saliency map 

To form the final saliency map, we sum all intermediate

aliency maps because all hierarchies are considered as equal prob-

bility on retaining object holism. In practical cases, we also find

t less reliable to use only one hierarchy. In our system, we con-

truct a tree structure with a moderate number of leaves (see
l salient object detection, Neurocomputing (2017), 
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Fig. 6. Two examples of the proposed hierarchical spectral partition and saliency assignment. Column-1: the original image and edge detection. Last column: the integrated 

saliency map and the final saliency map. Columns 2–10: segments (labeled in different colors) from different hierarchies (hierarchy 1–9) with the corresponding intermediate 

saliency maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Algorithm 1 Spectral Salient Object Detection. 

Input: Image I , graph affinity W , boundary constraint matrix U , 

hierarchy number t; 

Output: Superpixel-wise saliency ˜ s ; 

1: Initialization: hierarchy index τ = 0 , hierarchy R = { R 0 
1 
} ( R 0 

1 
refers to the entire image), the regional saliency scores S = ∅ 
of R ; 

2: while τ < t do 

3: τ ← τ + 1 ; 

4: if τ == 1 then 

5: Divide R 0 
1 

into R 1 
1 

and R 1 
2 

using constrained Ncut ( Eq. (6) ); 

6: Update R via: R ← R/ { R 0 
1 
} , and R ← R 

⋃ { R 1 
1 
, R 1 

2 
} ; 

7: Compute S = { s 1 
1 
, s 1 

2 
} by Eq. (10) , and formulate the inter- 

mediate saliency map; 

8: else 

9: Denote the segment rendering the lowest Ncut cost in R 

as R m 

n ; 

10: Divide R m 

n into R τn and R ττ+1 
using Ncut ( Eq. (3) ), where 

the graph is a sub-graph of G and its affinity matrix is 

derived from W ; 

11: Update R via: R ← R/ { R m 

n } , and R ← R 
⋃ { R τn , R ττ+1 

} ; 
12: Compute S ← S/ { s m 

n } , S ← S 
⋃ { s τn , s ττ+1 

} by Eq. (10) , and 

formulate the intermediate saliency map; 

13: end if 

14: end while 

15: Sum hierarchical intermediate saliency maps to get superpixel- 

wise saliency s . 

16: Apply graph-based semi-supervised learning Eq. (12) to s and 

obtain 

˜ s . 

i  

d  

a  

a  

u  

l  

u  

d  

b  

i  

[  

t  
ection 5.2.3 for details on choosing hierarchies), since an image

sually does not contain many semantic contents that need to be

eparated. 

To further refine the final result to maintain the superpixel-

evel details, a graph-based semi-supervised learning scheme is

pplied based on G to enforce manifold smoothness. Let us de-

ne s i be the saliency value of v i after integration, and s be

he vector form s = [ s 1 , s 2 , ..., s N ] 
T . The output saliency vector ˜ s =

 ̃ s 1 , ̃  s 2 , ..., ̃  s N ] 
T is computed by minimizing the learning energy

unction [66] as follows: 

( ̃ s ) = 

1 

N 

{ 

N ∑ 

i, j=1 

w i j 

(
˜ s i − ˜ s j 

)2 + μ
N ∑ 

i =1 

d i ( ̃  s i − s i ) 
2 

} 

(11) 

here w ij is the edge weight between v i and v j as defined in (4) ,

nd d i = 

∑ 

j w i j is the degree of v i . μ = 0 . 01 is set for obtaining

ufficient smoothing. In (11) , the first summation enforces similar

raph neighbors to take similar learning output, while the second

ummation requires the output fitting to the integrated result. The

olution to (11) is computed analytically as: 

˜ 
 = 

(
I − 1 

1 + μ
D 

−1 W 

)−1 

s (12) 

here I is an N × N identity matrix, D and W are the degree

atrix and the affinity matrix of G , respectively. The last col-

mn of Fig. 6 shows the linearly integrated map and the final

aliency map. As summary, the pseudo code of the proposed spec-

ral salient object detection algorithm is given in Algorithm 1 . 

. Experiments and results 

In this section, we first describe the experiments and evalua-

ions conducted to test the effectiveness of the proposed method.

e then describe the comparisons made with several state-of-the-

rt methods on five datasets, with results included. 

.1. Setup 

.1.1. Datasets and a reference model 

Five datasets having ground truth salient object masks were

sed for our tests, including ASD [8] , ECSSD [58] , MSRA+, PASCAL-S

67] and DUT-OMRON [21] . ASD [8] contains 10 0 0 images selected

rom the MSRA database [42] . Pixel-level ground truth is provided

y [8] . In this dataset, each image usually contains one single ob-

ect. ECSSD [58] contains 10 0 0 images with diversified patterns
Please cite this article as: K. Fu et al., Spectra

http://dx.doi.org/10.1016/j.neucom.2017.09.028 
n both foreground and background. Ground truth masks are pro-

uced by five subjects. MSRA+ formulated by us contains 40 0 0 im-

ges that belong to MSRA [42] but are not contained in ASD, to

void duplicated evaluation. Mostly, each image of MSRA+ has an

nambiguous salient object, and MSRA + is expected more chal-

enging than ASD. DUT-OMRON [21] contains 5168 images man-

ally selected from more than 140,0 0 0 images. Images of this

ataset have one or more salient objects and relatively complex

ackground. Three types of ground truth annotations are avaliable,

.e., bounding box, eye-tracking, and pixel-wise masks. PASCAL-S

67] is built on the validation set of PASCAL VOC 2010 segmenta-

ion challenge and contains 850 natural images. The ground truth
l salient object detection, Neurocomputing (2017), 
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Fig. 7. Sensitivity tests on the performance of the proposed method with respect to the parameters λc (top) and λe (down) in (5) . The performance of CST [47] is also 

shown. 

Fig. 8. Robustness of the proposed method against superpixel numbers. The performance of CST [47] is also shown. 
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annotations are labeled by 12 subjects on full segmentation of all

objects in the images. PASCAL-S is designed to avoid dataset bias. 

To show the robustness of our method, we include a recent

method, namely CST (Correspondence Saliency Transfer) [47] , as a

reference in the following evaluation. Since CST requires a large

reference dataset from which saliency information is transferred,

we choose DUT-OMRON as suggested in [47] . As a result, CST was

not evaluated on DUT-OMRON. 

5.1.2. Parameter settings 

To test the proposed methods, several parameters need to be

chosen empirically in our tests. For the graph affinity computation,
Please cite this article as: K. Fu et al., Spectra

http://dx.doi.org/10.1016/j.neucom.2017.09.028 
c = 10 and λe = 10 were used. All edge maps for testing the pro-

osed method were obtained from a state-of-the-art edge detector

62] that is based on the structured random forest. The structured

earning used enables the edge detector to consider both color and

exture information of image data. Other edge detectors can also

e used to replace the above edge detector as long as generates

easonably good edge maps. The number of hierarchies was fixed

s t = 9 in all our tests, leading to 10 segments in the last hi-

rarchy. We use N = 200 superpixels on each image. Evaluations

y varying various parameters are included in the next subsection.

n the following text, the proposed method is abbreviated as “SS ”

short for S pectral S alient object detection). 
l salient object detection, Neurocomputing (2017), 
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Fig. 9. Validation on Ncut segmentation by varying hierarchy ( τ ) and superpixel number ( N ). Vertical axis: the number of superpixels N (from 100 to 400); horizontal axis: 

the index of hierarchy level ( τ ∈ [1, 9]). A block in the matrices with warm color implies a high Jaccard coefficient C Jaccard . The maximums in the matrices are indicated by 

blue “x ” whereas the minimums in the matrices are indicated by blue “o ”. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 10. The performance versus the number of hierarchies t . Left: results from ASD dataset; Right: results from ECSSD dataset. 

Table 1 

Average CPU seconds on ASD dataset, all based on using Matlab code. 

Methods PCA MR DRFI DSR wCtrO ST TLLT CST SS 

Time (s) 4.8 0.5 5.7 4.4 0.2 75.6 2.2 41.8 1.4 
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.1.3. Metrics for performance evaluation 

Given a saliency map S map and the ground truth map Gt , three

idely adopted metrics are used for the evaluation of the proposed

ethod. They are briefly introduced as follows: 

1. Precision–Recall (PR) [8,9] is defined as: 

Precision (T ) = 

| M(T ) ∩ Gt | 
| M( T ) | , Recall ( T ) = 

| M( T ) ∩ Gt | 
| Gt| 

(13) 

where M ( T ) is the binary mask obtained by directly threshold-

ing the saliency map S map with the threshold T , and | · | is the
Please cite this article as: K. Fu et al., Spectra

http://dx.doi.org/10.1016/j.neucom.2017.09.028 
total area of the mask(s) inside the map. By varying T from 0

to 255, a precision–recall curve can be obtained. 

2. F-measure ( F β ) [8,9] is defined as: 

F β = 

(
1 + β2 

)
Precision · Recall 

β2 · Precision + Recall 
(14) 

where β is the weight between the precision and the recall.

β2 = 0 . 3 is usually set since the precision is often weighted

more than the recall [8] . In order to get a single-valued score,

existing works usually first binarize a saliency map into a fore-

ground mask map, leading to a single precision and recall
l salient object detection, Neurocomputing (2017), 
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Fig. 11. Validation of edge affinity and graph-based semi-supervised learning. Results are achieved by removing individual components from our complete system. In this 

figure, SS stands for our complete method. The performance of CST [47] is also shown. 
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values. The most common way to do this is by adaptive thresh-

olding, where the adaptive threshold is defined as two times of

the mean value of the saliency map [8,9] . 

3. Mean absolute error (MAE) [20,59] is defined as: 

MAE = 

1 

W · H 

W ∑ 

x =1 

H ∑ 

y =1 

| S map (x, y ) − Gt(x, y ) | (15)

where S map ( x, y ) and Gt ( x, y ) correspond to the saliency value

and ground truth value at pixel location ( x, y ). W and H are the

width and height of S map . 

Among the above three metrics, high precision–recall curves, high

F β , and low MAE indicate good saliency models. 

5.2. Tests and evaluation on the proposed method 

5.2.1. Sensitivity of the performance with respect to parameters 

The two damping factors λc and λe in (5) play an important

role in controlling the graph affinity, and therefore the Ncut re-

sults. The suitable ranges of these two parameters were tested.

We conducted the tests on ASD and ECSSD. Precision–recall curves

were obtained by varying λc while fixing λe = 10 , and then vary-

ing λe while fixing λc = 10 . The resulting precision–recall curves

with F-measure F β are shown in Fig. 7 . From Fig. 7 , one can ob-

serve that too small λc or λe (e.g., 1 or 5) leads to degener-

ated performance. The reason is that these exponential damping

factors in (4) are not adequate to render a small affinity when

superpixels have relatively large color differences or intervening

edge magnitudes. When λc and λe values increase up to approx-

imately 10, the performance improves. However, a further increase
Please cite this article as: K. Fu et al., Spectra
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f these values provides very little improvement on both datasets,

nd sometimes even leads to a bit degeneration (see Fig. 7 , when

c = 40 ). In all, we find the performance is stable when parameters

c and λe are within [10, 20]. We set λc = 10 and λe = 10 in the

xperiments. 

Besides, we have found our method is generally robust to super-

ixel numbers. Precision–recall curves with F-measure F β on ASD

nd ECSSD by tuning the superpixel number N from 100 to 400 are

ocumented in Fig. 8 . The overall perform changes slightly even if

ne uses × 4 superpixels to perform detection. 

.2.2. Validation on Ncut segmentation 

Ncut plays an essential role to retain an object holistically

hrough hierarchies. To see how well the hierarchies generated by

cut could retain object holism, we adopt the well-known Jaccard

oefficient C Jaccard as the measure. Given two binary masks R and

 

′ , C Jaccard is defined as: 

 Jaccard = 

|R 

⋂ 

R 

′ | 
| R 

⋃ 

R 

′ | 
he evaluation was conducted by varying both the hierarchy and

he number of superpixels. Giving a specific number N ∈ {10 0, 20 0,

00} and a hierarchy index τ ∈ [1, 9], the segment in the current

ierarchy having the highest C Jaccard score with the ground truth

ask was found. For certain N and t, C Jaccard scores were averaged

ver an entire dataset. 

Fig. 9 shows the evaluation results (in the matrix form)

n all five datasets. Observing Fig. 9 , one can see that the

cut in the first hierarchy ( τ = 1 ) has, in general, the strongest
l salient object detection, Neurocomputing (2017), 
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Fig. 12. Visual results of the proposed method without using semi-supervised learning. (a) Original images. (b) Ground truth masks. (c) Results without semi-supervised 

learning refinement, where object holism is kept by integrating Ncut and saliency assignment from multiple hierarchies. 

Fig. 13. Behavior of individual saliency measures (without using semi-supervised learning) on ASD (left) and ECSSD (right) datasets. In this figure, SS stands for our complete 

method. The performance of CST [47] is also shown. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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h  
apability of segmenting entire salient objects from the back-

round. When τ increases, the Jaccard coefficient C Jaccard decreases

s the holistic object is less likely to be retained. This indicates

hat one should use a moderate number of top hierarchies. Fur-

hermore, the results on ASD has the highest C Jaccard = 0 . 79 , im-

lying this dataset is the easiest among the five datasets for the

roposed method to retain object holism. The following C Jaccard 

cores are from MSRA+ ( C Jaccard = 0 . 63 ) and ECSSD ( C Jaccard = 0 . 57 ).

wo most difficult datasets are PASCAL-S and DUT-OMRON, where

 Jaccard reaches only 0.44 on both datasets. This indicates that much

oom still exists for further improving holism-retained segmen-

ation for saliency detection, especially on difficult datasets like
 o  

Please cite this article as: K. Fu et al., Spectra
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ASCAL-S and DUT-OMRON. Another interesting observation is that

n DUT-OMRON, the first hierarchy ( τ = 1 ) seems not as effec-

ive as usual to achieve the highest C Jaccard scores. This is caused

y complex contents in DUT-OMRON, which make it very diffi-

ult to keep holistic objects by using Ncut once. Therefore fur-

her partitions are required and the maximum C Jaccard appears

hen τ = 4 . 

.2.3. Performance versus the number of hierarchies 

Fig. 10 shows the experimental results from using different

ierarchies on ASD and ECSSD datasets. From Fig. 10 , one can

bserve that using the first hierarchy (i.e., partition an image
l salient object detection, Neurocomputing (2017), 
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Fig. 14. Performance evaluations from the proposed method SS and the 13 existing methods on five benchmark datasets. Column-1: precision–recall curves; Column-2: 

precision, recall and F-measure by adaptive threshold; Column-3: mean absolute error (MAE). Rows from top to down: the results on ASD, ECSSD, MSRA+, PASCAL-S, and 

DUT-OMRON datasets. 
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only into two segments) is shown to be less effective as it is

insufficient for separating a whole object from the background.

This is clearly validated in Fig. 4 . On the other hand, the

performance of using constrained Ncut (CNcut in Fig. 10 ) is

much higher than using traditional Ncut. Such quantitative re-

sults are also consistent with the qualitative observations in
Please cite this article as: K. Fu et al., Spectra
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ig. 4 . Increasing the number of hierarchies from t = 1 to t =
 improves the performance with a large margin, indicating

he effectiveness of integrating multiple hierarchies. When in-

reasing t from 6 to 9 and further to 19, the performance

ain is very limited. Therefore, we use t = 9 hierarchies in the

xperiments. 
l salient object detection, Neurocomputing (2017), 
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Fig. 15. Visual comparisons of SS to 13 existing methods. 
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1 DRFI is the best model in a recent benchmark [68] thanks to DRFI’s supervised 

learning strategy. 
2 CST is implemented using the code from http://github.com/shenjianbing/ 
.2.4. Validation of individual modules 

We have validated the individual impact of edge detection and

emi-supervised learning. Experiments were conducted by remov-

ng these two modules from our complete method. To remove

dge detection, we use only color affinity (i.e., S w 

i j 
) instead of

he square root of both color and edge affinity. To remove semi-

upervised learning, we just use integrated saliency maps from hi-

rarchies. Fig. 11 shows the resulting precision–recall curves with

-measure F β on four databases: ASD, ECSSD, MSRA+, and DUT-

MRON. From Fig. 11 one can see that introducing edge affinity

nd semi-supervised has moderate improvement over the entire

ystem while removing them leads to certain performance drop.

ig. 12 shows some visual results without semi-supervised learn-

ng, where holistic objects are highlighted from the background.

his provides further support to using Ncut for retaining object

olism. 

The impact of the three regional saliency measures

 1 , M 2 , M 3 were also tested. There exist 7 possible combi-

ation of them. In addition, we show the performance of applying

hese measures directly to superpixels without any hierarchies.

ig. 13 shows the quantitative evaluation. One can observe that

ombining the three measures (the red dash curves) consistently

utperforms using only one or combining two of them. Besides,

ithout the enhancement from hierarchies, jointly computing the

hree measures on superpixels (the purple dash curves) can hardly
 s

Please cite this article as: K. Fu et al., Spectra
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chieve high precision under high recall. This reveals that in such

 case holistic salient objects are not detected. 

.3. Comparisons with 13 state-of-the-art methods 

On the five aforementioned datasets, we test and compare the

roposed method SS with 13 state-of-the-art methods including:

C (Region Contrast) [9] , PCA [32] , HS (Hierarchical Saliency) [58] ,

R (Manifold Ranking) [21] , GC (Global Cue) [59] , DSR (Dense and

parse Reconstruction) [33] , DRFI (Discriminative Regional Feature

ntegration) [43] , wCtrO (background weighted Contrast with Opti-

ization) [37] , Saliency Tree [60] , PISA (Pixelwise Image Saliency

y Aggregation) [31] , TLLT (Teaching-to-Learn and Learning-to-

each saliency) [38] , MB+ (enhanced Minimum Barrier saliency)

39] , CST (Correspondence Saliency Transfer) [47] . All of the con-

enders are unsupervised computational saliency models except

RFI 1 and CST 2 . Note that DRFI, wCtro, ST, DSR are among the best

coring models in a recent benchmark [68] . 

Quantitative comparisons are shown in Fig. 14 . The precision–

ecall (PR) curves obtained by using a fixed threshold T, T ∈ [0, 255]
aliencytransfer . 

l salient object detection, Neurocomputing (2017), 
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Fig. 16. Two failure cases. (a) Input images from DUT-OMRON; (b) results without 

semi-supervised learning refinement; (c) finaly saliency maps and (d) ground truth 

masks. 
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are shown in Fig. 14 (1st column). Observing the results, the pro-

posed method achieves state-of-the-art performance and outper-

forms many contenders on the five benchmark databases. Interest-

ingly, SS achieves top precision values when recall is greater than

0.6, may be due to the use of Ncut and entire objects are uniformly

highlighted. This is very useful since for some applications such as

Saliency Cut [9] , the initial masks are usually generated by select-

ing a fixed threshold under high recall [9] . While DRFI which is

based on supervised learning outperforms SS on MSRA+, PASCAL-

S, DUT-OMRON, ECSSD, SS shows superior performance to DRFI on

ASD although it works without supervised learning. 

Another evaluation is carried out by using an adaptive thresh-

old to binarize saliency maps [8,9] . The resultant single preci-

sion, recall and F-measure scores of each method are shown in

Fig. 14 (2nd column). Notably, on F-measure, the proposed method

achieves top three on ASD, ECSSD, MSRA+ and PASCAL-S. On DUT-

OMRON the proposed method performs less satisfactory (rank 4th)

as comparing to the other four datasets, however it still outper-

forms DSR, ST and wCtrO. Comparing the performance under the

MAE metric as shown in Fig. 14 (3rd column), SS does not achieve

the lowest MAE on any database, but the performance is still com-

parable. Fig. 15 further shows some visual comparisons, where

SS performs well on highlighting large salient objects, and the

saliency maps from SS are closer to the ground truth with more

visual agreement. This should be attributed to the leverage of Ncut

and infers potential advantages of SS over existing models. 

5.4. Computational efficiency 

The average running time of SS on ASD (default settings men-

tioned in Section 5.1 ) is 1.4 s, where 16% of the time is taken

by superpixel segmentation, and 27% by multi-scale random for-

est edge detection. The hierarchical spectral partition, incremental

saliency computation, and final semi-supervised learning in total

take the remaining 57% of the time. Table 1 shows the average run-

ning time of SS compared to several state-of-the-art models 3 on a

laptop equipped with an Intel i7-4720HQ 2.6 GHz CPU and 8 GB

memory by un-optimized Matlab code. 

Regarding to the eigen-solving problems in SS, the brutal-force

solution has time complexity O ( N 

3 ), where N denotes the number

of graph/sub-graph nodes. Fortunately, our superpixel graph could

be deemed approximately as a regular graph and its affinity matrix

W is very sparse. Using Lanczos algorithm makes finding the sec-

ond smallest eigenvector O ( ξN ) complexity, where ξ is the maxi-

mum number of power iterations. 

5.5. Limitation 

The proposed spectral salient object detection algorithm some-

times fails to highlight the most focused objects in the scenes as

shown in Fig. 16 . The reasons are two folds. First, Ncut is a biased

cut on fairly large sets of vertices. When both large and small ob-

jects exist in the scene, our algorithm tends to pop-up the large

one and meanwhile suppresses the small one. Second, in such

scenes, the small objects that attract attention are related to high-

level and semantic attributes. For example, “persons” are likely to

grasp more attention. Since the proposed method is fully bottom-

up and leverages only low-level cues, it lacks ability to find out se-

mantic objects that are less prominent on low-level features, e.g.,

colors, contrast, boundary intensities. 
3 We only have compared the running time on Matlab, so those methods whose 

released code are in Matlab form are considered here. 
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. Conclusion 

The proposed spectral salient object detection method, has

een tested and evaluated on five benchmark datasets. By ap-

lying Ncut to a superpixel graph that captures color and edge

nformation in image, our method is shown to be effective on

etecting salient objects holistically, especially salient objects of

arge/moderated sizes. By using the binary segmentation tree from

he hierarchical spectral partition, segments in each tree hierar-

hy are effectively incorporated with regional saliency metrics to

stimate object saliency. Experimental results show the proposed

ethod is capable of detecting and emphasizing salient objects

niformly by integrating intermediate saliency maps from succes-

ive hierarchies. Comparisons to 13 existing models on five bench-

ark datasets demonstrate the state-of-the-art performance of the

roposed method under widely used criteria. Future works include

xploiting some enhanced graph cut approaches to assist saliency

omputation, and incorporating more sophisticated saliency esti-

ation and integration methods with our current work. 
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