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Abstract. Recently, tracking is regarded as a binary classification
problem by discriminative tracking methods. However, such binary
classification may not fully handle the outliers, which may cause drift-
ing. We argue that tracking may be regarded as one-class problem,
which avoids gathering limited negative samples for background
description. Inspired by the fact the positive feature space generated
by one-class support vector machine (SVM) is bounded by a closed
hyper sphere, we propose a tracking method utilizing one-class SVMs
that adopt histograms of oriented gradient and 2bit binary patterns as
features. Thus, it is called the one-class SVM tracker (OCST).
Simultaneously, an efficient initialization and online updating scheme
is proposed. Extensive experimental results prove that OCST outper-
forms some state-of-the-art discriminative tracking methods that
tackle the problem using binary classifiers on providing accurate
tracking and alleviating serious drifting. © 2013 SPIE and IS&T
[DOI: 10.1117/1.JEI.22.2.023002]

1 Introduction
Tracking is regarded as a key point in computer vision field
studies, and has been extensively researched for decades.
Recently, tracking-by-detection methods1–9 are explored
to formulate tracking as a binary classification problem,
which distinguishes the object from the background. That
is, the target regions are regarded as positive samples and
the nontarget regions are deemed as negative samples,
whereas a classifier is trained to seek a decision boundary
that can best separate the positive and negative. The classi-
fiers used to tackle this problem, like support vector machine
(SVM)2 or the ones generated by Adaboost algorithm,3 usu-
ally have a good ability to handle high-dimensional data.

Babenko et al.6 adapted multiple instance learning (MIL)10,11

instead of traditional supervised learning by building an
evolving and boosting classifier that tracks bags of image
patches, and reports excellent tracking results on challenging
video sequences. However, such supervised or MIL-based
methods may not guarantee a closed positive feature space,
and sometimes may be less robust to the outliers.12

The semisupervised learning based methods7–9 are pro-
posed to treat object tracking as an online semisupervised
binary classification problem. In addition to the labeled sam-
ples, the semisupervised classification tries to use more unla-
beled samples, which brings a stronger ability to handle the
outliers. The deficiency of these methods is that beyond the
labeled data, a large number of unlabeled data should be
collected online, and also many semisupervised algorithms,
like transductive SVM,12 are highly computational, hence
degrading the performance of the tracking system to be far
away from real-time processing. Besides, the semisupervised
based tracking methods have not totally solved the outlier
problem as well, which may lead to drifting problem. This
will be discussed in the following section.

In this paper, we propose a robust tracking method using
one-class SVM, so we call it the one-class SVM tracker
(OCST), which falls into the tracking-by-detection category.
We propose that the tracking problem may be treated as
one-class classification case rather than the binary case.
One-class SVM13 is proposed to estimate the distribution
of high-dimensional data, and then it has been used in docu-
ment classification14 and image retrieval.15 Recently, Gong
and Cheng16 use two competing one-class SVMs to segment
foreground from video sequences. The most related work to
ours is Ref. 17, because to our best knowledge, Ref. 17 is the
only tracking method that has employed one-class SVM.
Their method first selects candidate samples that achieve
high similarity coefficients with the tracked target, and
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then uses these samples to train the one-class SVM to find
the center of the hyper sphere. This center sample is treated
as the target estimation; however, we use one-class SVM dif-
ferently from that in Ref. 17, because one-class SVM in
Ref. 17 is more like a refiner rather than classifier. So,
their method may not be regarded as discriminative method.
In contrast, we introduce one-class SVM as a discriminative
classifier while taking advantage of its ability to deal with
outliers and process high-dimensional data. Moreover,
we consider combining multiple features into our OCST
framework.

In summary, this paper has the following contributions:

1. We demonstrate that object tracking should be
regarded as a one-class problem (enclosed positive
feature space), which avoids gathering limited nega-
tive samples for background description. Theoretical
analysis of the reason is also shown in this paper.

2. One-class SVM is employed as discriminative classi-
fier rather than a refiner in the conventional case,17

and is formulated in the typical tracking-by-detection
framework, bringing stronger ability to handle outliers.

3. Multiple features [histograms of oriented gradient
(HOG) and 2bit binary patterns (2bitBP)] are intro-
duced and combined using one-class SVMs.

4. Experimental results show that the proposed OCST is
feasible and even outperforms some state-of-the-art
binary discriminative trackers on providing accurate
and stable tracking.

A preliminary conference version of this work appeared
in Ref. 18.

The rest of this paper is organized as follows. Related
work is described in Sec. 2. Details of our implemen-
tation with one-class SVM are demonstrated in Sec. 3.
Experimental results are analyzed in Sec. 4, and conclusions
and future work are in Sec. 5.

2 Related Work

2.1 Tracking-By-Detection Methods
Tracking-by-detection methods, or so called discriminative
methods are explored to formulate tracking task as a binary
classification problem and supervised or semisupervised
learning methods are considered. The support vector tracker2

uses an offline-learned SVM as classifier and embeds it into
an optical flow to track moving vehicles. The final tracking
position is characterized with the highest SVM score. Yet
their SVM never updates online, leading to lower adaptabil-
ity. In addition, the effort of building such a large off-line
sample set manually is usually considerable. Grabner and
Bischof3 utilize the Adaboost algorithm to perform online
feature selection. Their positive and negative samples are
collected online, so no additional manual effort is needed.
However, their method may cause a drifting problem in a
complex background, due to the potential effect of outliers,12

which is also a common problem of these supervised meth-
ods. Babenko et al.6 uses MIL10,11 to train the appearance
classifier, resulting in a relatively robust tracking, and an on-
line boosting (OB) algorithm for MIL is also presented. Tang
et al.8 adopt co-training to take the advantage of multiple in-
dependent features for training a set of classifiers online. The

classifiers then collaboratively classify the unlabeled data, and
use these newly labeled data to update each other. Each feature
is used to train an online SVM, and their outputs are combined
to give the final classification results. Stalder et al.9 use an off-
line detector, on-line supervised identifier, and semisupervised
tracker to extend semisupervised tracking by object specific
and adaptive priors; however, their model relies strongly on
the prior classifier, leading to frequent target loss.

These tracking-by-detection methods mentioned above
treat tracking as a binary classification problem, for super-
vised, MIL,or semisupervised learning-based methods. So,
their common problem is that they could not fully handle
the outliers (Fig. 1), leading to inaccurate tracking. Also,
semisupervised learning requires a large number of unla-
beled samples for learning simultaneously with extra time
cost in feature extraction and classification.

2.2 Our Motivation
The key insight of our approach is to take advantage of one-
class SVM for tackling the tracking problem. A vivid illus-
tration of the difference between one-class SVM and a super-
vised binary classifier as well as a semisupervised binary
classifier is shown in Fig. 1. As is shown in Fig. 1(d), in
the typical tracking-by-detection framework, the tracker
would use a sliding window technique to search for the target
in the current frame [denoted as ground truth in Fig. 1(d)].
The searching region is usually centered at the target position
in the previous frame. Then, the unlabeled candidate samples
corresponding to each sliding window are collected and clas-
sified using binary classifiers. We could see that with the
supervised or semisupervised learning method, when train-
ing samples are collected, a decision boundary is usually
generated to classify the positive and negative categories
with the maximum margin or minimum error. However,
an unlabeled candidate sample (denoted in diamond) that
is far away from the positive sample set (i.e., an outlier)
may be misclassified as positive [Fig. 1(a) and 1(b)]. This
unlabeled sample may correspond to the region that contains
a nontarget object or part of the tracked target [notice the
solid arrows from Fig. 1(c) to 1(d)] or even any changing
background whose information is not previously obtained
to train the classifiers. Moreover, a high classification
score may be obtained for this unlabeled sample due to its
further distance from the decision boundary [see Fig.1(b)];
thus, it is more likely to contribute to the final tracking posi-
tion, leading to an inaccurate location or drifting.

The key point of the problem above is that the positive
feature space separated by the decision boundary in binary
case may be unenclosed [Fig. 1(a) and 1(b)]. Moreover,
using a limited number of labeled negative or unlabeled sam-
ples could hardly describe or estimate the total complex
moving environment. Thus, in this case, one-class SVM
should be introduced to solve this problem. It can estimate
the distribution of high-dimensional samples, and the classi-
fier only needs positive samples as input, and hence, it effec-
tively avoids collecting negative samples for background
description. From another sight, one-class SVM makes
the judgment whether an unlabeled sample is the target
object or the remaining, using the only information of pos-
itive training samples.

Another important point in this paper is that the separated
positive feature space should be bounded (enclosed) by a
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closed sphere. Thus, an unlabeled sample is classified as
“inlier” or “outlier” rather than “positive” or “negative.”
In Fig. 1(c), all samples far away from the positive sample
set, i.e. the closed hyper sphere, would be excluded as out-
liers by one-class SVM. Only the real region of the tracked
target will be classified as inlier [notice the dash arrow from
Fig. 1(c) to 1(d)], which results in more accurate tracking as
well as alleviating the drifting risk.

3 One-Class SVM Assisted Tracking
In this section, we introduce our tracking algorithm, the
OCST, which uses one-class SVM as a discriminative clas-
sifier, and takes the advantage of the dense HOG19 and
2bitBP20 features. We begin with a brief description of one-
class SVM. Next, we illustrate the details of feature extrac-
tion and combination. Finally, we review our online tracking
framework.

3.1 One-Class SVM
The SVM algorithm as it is usually construed is essentially a
binary-class algorithm21 (needs negative and positive sam-
ples), especially in computer vision field tasks like tracking
and object detection. However, when only positive samples
can be acquired while negative samples have no certain dis-
tribution and remain irregular, the one-class SVM should be
considered. The one-class SVM13 algorithm considers the
following problems. Supposing that there is a dataset
drawn from an underlying probability distribution P, one
needs to estimate a “simple” subset S of the input space
such that the probability that a test point from P lying outside
of S is bounded by some a prior-specified v ∈ ð0; 1Þ, because
in most cases, it is more feasible to solve for such S rather
than the original distribution P. The solution for this problem
is obtained by estimating a function f, which is positive on S
and negative on S̄. In other words, Schölkopf et al.13 devel-
oped an algorithm that returns a function f that is positive in
a “small” region capturing most of the data vectors, and is
negative elsewhere.

Their strategy can be summarized as mapping the data
into a feature space H using an appropriate kernel function,
and then trying to separate the mapped vectors from the
origin with maximum margin.

Here, let x1; x2; x3: : : xm be training samples (bold is used
since they are usually feature vectors) belonging to one
known class X, where X is a compact subset of RN according

to Ref. 13. Let ϕ∶X → H be a kernel map that transforms the
training samples to another space. Then, to separate the data
set from the origin, one needs to solve the following quad-
ratic programming problem:

min
1

2
kwk2 þ 1

vl

Xm
i¼l

ξi − ρ; (1)

subject to w · ϕðxiÞ ≥ ρ − ξi i ¼ 1; 2; 3; : : : ; m; ξi ≥ 0:

(2)

Nonzero slack variables ξi are penalized in the objective
function. If w and ρ are worked out by solving the problem
above, then the decision function could be formed as

fðxÞ ¼ w · ϕðxÞ − ρ: (3)

Equation (3) will be positive for most samples xi contained
in the training set; v ∈ ð0; 1Þ is a parameter that controls the
number of samples contained in the hyper sphere. When v is
larger, the energy function tends to focus less on the slack var-
iables and focuses more on the separating margin. Thus, less
training samples are contained by the hyper sphere. On the
contrary, when v turns smaller, the hyper sphere will contain
more training samples meanwhile reducing the classification
error. However, it would simultaneously degrade the ability of
excluding outliers (see Ref. 13 for details). The v for our one-
class SVMs will be introduced in Sec. 4.

In fact, Eqs. (1) and (2) could be switched to a dual prob-
lem via employing the Lagrangian multipliers and solved by
using quadratic programs. The most widely used radial basis
function kernel is chosen in this paper to process the feature
mapping. For more details, we strongly recommend readers
to refer to Ref. 13. Despite the solution to Eqs. (1) and (2),
one thing should be noted that because the distance between
a specific sample x̄ and the decision boundary fðxÞ ¼ 0 is
jfðx̄Þj∕kwk, thus, when a sample x̄ is positive and obtains
a larger fðx̄Þ, it is further from the decision boundary, and
may be more reliable. This criterion would help us choose
the optimal candidate.2

Based on this theory, in a tracking task, we also search for
a hyper sphere that contains most of the training samples
obtained consequently from the target region. After training,
the decision boundary allows us to choose the most appro-
priate candidate region.

(a) Supervised (b) Semi-supervised (c) One-Class SVM

Inlier

Outlier

(d) Tracking-by-detection

Space unenclosed Space unenclosed

Closed Sphere

Previous

Sliding Window

Nontarget Object

Part of Target

Ground Truth

Searching Region

Line style in (d)

Fig. 1 An illustration of the difference between using supervised binary classifier (a) [e.g., binary support vector machine (SVM)], semisupervised
binary classifier (b), and one-class SVM (c). (d) shows a typical tracking-by-detection framework. In (a)–(c), the circles represent the training
positive samples, and the crosses stand for the negative ones. The solid balls represent unlabeled candidate samples and the diamond stands
for a special unlabeled sample used for illustration convenience.
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3.2 Feature Selection
Beyond using one-class SVM, the feature selection for
tracking is also an important part. Good features usually
have nice ability to characterize the unique appearance of
the tracked target meanwhile distinguishing it from the com-
plex background and other objects. In recent research, many
kinds of features such as HOG features,19 color histogram,22

Haar-like features,23 Gabor features,24 and local binary pat-
terns (LBP) features25 are adopted for tracking. Tang et al.8

uses both color histogram and HOG features to train their
corresponding SVMs while Grabner et al.3 use Haar-like,
LBP, and HOG features. However, the color histogram has
a relatively weaker distinguishing ability, especially when
the background color is similar to the target color, thus lead-
ing to drifting, e.g., the meanshift (MS) algorithm.22 So, in
this paper, we reject the color histogram and tend to choose
the kind of features that describe the target’s shape and
texture, and the selected features should also be invariant to
illumination changes.

We ultimately base our tracker on HOG and a new feature
called 2bitBP,20 which is indeed derived from a Haar-like
feature, for characterizing the appearance of target. In this
paper, we fuse these two feature extraction processes into
the same scheme. First, the target region is divided into
some overlapped square blocks, similar to the standard HOG
extraction (Fig. 2). In each block, we extract both HOG and
2bitBP features. For HOG features, each block contains four
cells. If nine bins are chosen in each cell,19 a 36-dimension
vector is constructed in every block. For 2bitBP features, the
block is divided in the horizontal and vertical directions, and
the sum intensity [denoted as IðaiÞði ∈ f1; 2; 3; 4gÞ in Fig. 2]
of the two sides is computed and compared to obtain a 2bit
code (Fig. 2).20

In traditional HOG for human detection,19 the recom-
mended block size (BS) is 16 for 64 width and 128 height
human images. However, in tracking, the BS should be adap-
tive to the size of a specific tracked target. So, we define the
BS as

BS ¼ min

�
W
N

;
H
N

�
; (4)

where W and H are the width and height of the tracking rec-
tangle, respectively. We force the minimum number of
blocks (nonoverlapped) in the horizontal or vertical direction
to beN. The defaultN is chosen as 4, which achieves the best
performance in our experiment. When N becomes smaller,
the description ability of each block will be degraded for
both HOG and 2bitBP features, while a larger N will result
in a high-dimensional feature vector for every tracked region.
According to the analysis above, the dimension of our HOG
feature is at least ð4þ 3Þ × ð4þ 3Þ × 36 ¼ 1764 and the
dimension of 2bitBP is ð4þ 3Þ × ð4þ 3Þ × 2bit ¼ 98bit.
Here, we stack all the bits of the 2bitBP feature that corre-
sponds to each sliding window into a single feature vector
and use one-class SVM to classify these “bit” vectors. Such
high-dimensional HOG and 2bitBP feature vectors could
take the advantage of the high-dimensional processing abil-
ity of one-class SVM.

Last, but not the least, the entire block region should be
centered in the tracking rectangle, so that the center-
surrounded feature can be extracted, thus performing more
accurate locating. A vivid example of our feature extraction
for a W ¼ 75 and H ¼ 150 target is shown in Fig. 2.

3.3 On-Line Tracking
3.3.1 Motion model

Generally, our tracker maintains the target location ln at every
frame step, n. In a certain frame n, a candidate sample set
Xr ¼ x∶klðxÞ − ln−1k < r is collected using a sliding window
(rectangle) technique, in which lðxÞ is the location (consisting
of only horizontal and vertical coordinates) of a candidate
sample x, which corresponds to a specific window, and r rep-
resents the searching radius. We then compute a combining
score function SðxÞ through one-class SVM for all x ∈ Xr,
and update the target location using the position corresponds
to the candidate sample which maximizes the score as

ln ¼ l½argmax
x∈Xr

SðxÞ�; (5)

where the combining score function SðxÞ will be
introduced in the next subsection. In other words, we do

overlapped blocksblock Size=18

36 dimension HOG

Video Frame

Zoom In

a1

a2

a3 a4

4 cells

I(a1)>I(a2)

I(a1)<I(a2)

I(a3)>I(a4)

I(a3)<I(a4)

2bitBP

9 bins

vertical

horizontal

00

01

10

11

Fig. 2 An example of our feature extraction for aW ¼ 75 and H ¼ 150 target; BS ¼ ½minf75∕4;150∕4g� ¼ 18. The feature region is centered and
forced to contain at least four nonoverlapped blocks in the horizontal or vertical directions while the stride (block overlap) is fixed at half of the block
size (BS) similarly to Dalal et al.19 In each block, a 36-dimension histograms of oriented gradient (HOG) and 2bit binary patterns (2bitBP) are
generated. In the above figure, Iðai Þði ∈ f1;2;3;4gÞ denotes the sum of pixel intensity in region ai .
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not maintain a distribution of the target’s location at every
frame, and our motion model is such that the location of
the target in frame n is equally likely to appear within a radius
r of the target location in frame n − 1. This could be extended
with something more sophisticated, such as a particle filter.4

Using a prior distribution produced by particle filters or
Kalman filters is likely to perform well in normal cases.
However, it may degrade the ability of trackers to handle
abrupt or abnormal cases like sudden moving orientation
changes of the tracked target. So, for more universal consid-
eration, we assume that the target location in frame n may
obey the uniform distribution centered at the target location
in frame n − 1. The searching radius r depends on the moving
speed of the tracked target. Since the target’s motion between
two adjacent frames is not that exaggerated, we set the search-
ing radius r to 10 to 20 pixels, which works well in
most cases.

3.3.2 Initialization and updating

In the beginning of tracking process, an initial tracking
rectangle should be given. This rectangle could be chosen
manually or provided by object detection algorithms26 or
even change detection algorithms for moving object. When
the first rectangle is given, the tracker begins tracking.
Supervised and semisupervised tracking methods need to
collect both positive and negative samples online in the first
several frames. Tang et al.8 adopts the MS tracker22 to track
targets in the beginning several frames in order to collect the
positive and negative samples. Compared with their method,
our method is much simpler and more effective.

We construct a positive sample pool to store the latest
positive samples (assume each sample contains HOG
and 2bitBP features x ¼ fxH; xBg). Then these samples are
used to train our one-class SVMs. By the way, we first
build a score function that is similar to the SVM score in
the binary classification case.2 Our score function is obtained
using the decision function [Eq. (3)] as

SðxÞ ¼ wHeαHfHðxHÞ þ wBeαBfBðxBÞ; (6)

where fH and fB are the one-class SVM decision functions
for HOG and 2bitBP, respectively. The reason of using the
decision function f is that, while f maintains positive and
turns larger, it indicates that a candidate sample is positive
and is further from the hyper sphere, leading to more reliable
result. This fact is also consistent with the binary case2; αH
and αB are scaling factors which help pull down Eq. (6) when
the exponents of the two terms turn negative. In practice, we
find αH ¼ αB ¼ 10 to be suitable for normalized features.

The weights wH and wB are computed using classification
errors as

wH ¼ 1 − ϵH∕ðϵH þ ϵB þ τÞ; (7)

wB ¼ 1 − ϵB∕ðϵH þ ϵB þ τÞ; (8)

in which ϵH and ϵB are the respective classification errors of
the two one-class SVMs; τ is a small number which avoids
the divide-by-0 issue; wH þ wB ¼ 1 is also satisfied above.

From Eq. (6), we can see that SðxÞ > 1 roughly means the
corresponding sample is classified as inlier, while SðxÞ < 1 is
for an outlier. Because Eq. (6) helps us visualize the classi-
fication results, in practice, we always select the sample
which makes Eq. (6) achieve its maximum according to
Eq. (5) in each frame as our target, and add it into the pool.

In addition, we set a hard threshold to avoid low score
samples being added into the positive sample pool. When
the current score function [Eq. (6)] at the global maximum
is lower than the threshold, the target may suddenly become
seriously occluded by some other object or disappearing near
the scenario boundary. This threshold should be manually
determined, as it represents how conservative one wants
to be in their updating scheme.

The initializing process is illustrated by Fig. 3. In the first
frame, the sample pool is initialized (empty) and the first
positive sample is pushed into the pool. The only sample
is then used to train the classifiers. In this case, the one-
class SVM may degrade into a nearest neighbor classifier,
which seeks a nearest neighbor in feature space of the
only training sample. In the following frames (2nd, 3rd,
4th. . . ), more and more samples which maximize Eq. (6)
are collected online and pushed into the pool to train the
one-class SVMs.

Gradually, the added target samples may increase the
computational cost and burden of the classifiers. So, we
always retain the latest k (e.g., k ¼ 30) samples in our
sample pool, and the relatively older samples are thrown
away. Thanks to one-class SVMs, taking a small number
of high-dimensional positive samples can achieve a good
generalization performance. Actually, we use a “First In,
First Out” (FIFO) to realize this process. When the FIFO
is full, adding a new positive sample will cause an old sample
to pop out. Figure 4 shows our on-line tracking framework.

4 Experiments and Analysis
Our method is validated on a large amount of video sequen-
ces and compared to some state-of-the-art discriminative
tracking methods, including OB3 and beyond semiboosting

2nd Frame 3rd Frame 4th Frame

hyper sphere
hyper sphere hyper sphere

sample pool sample pool 
new sample which is 

pushed into the pool 

new sample which is 

pushed into the pool 
new sample which is 

pushed into the pool 

Fig. 3 The initializing process in the first several frames. In the 2nd frame, the unlabeled sample that is nearest to the decision sphere is chosen as
our positive sample. The one-class support vector machine (SVM) may degrade into the nearest neighbor classifier. In the following frames, more
and more positive samples that maximize Eq. (6) are pushed into the pool.
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(BSB)9 (the codes of these methods are available at the
authors’ webpage). In addition, a typical MS method22

and a naive nearest neighbor tracker (NNT) are considered
into comparison. As the v seems to be an important param-
eter for a one-class SVM, in practice, we try different values
for v, from 0.1 to 0.9. However, because we always select the

candidate with maximum score as target, the performance
of our tracker seems to be insensitive to the change of v.
Considering that a too-large v results in low classification
accuracy while a small v leads to less robustness against out-
liers, we use the typical 0.5 value for our one-class SVMs.
This parameter remains consistent in all our experiments.

One-Class SVMSample Set Object Region

Sample Pool (FIFO)

elpmaS evitisoP tsedlOelpmaS evitisoP weN

new frame

candidate target region

Fig. 4 Online tracking framework based on one-class support vector machine (SVM). The unlabeled sample set in new frame is extracted uniformly
surrounding the last target position. The object region is chosen as the sample which maximizes Eq. (6). Our positive sample pool is realized using
a “First In, First Out” (FIFO). When the FIFO is full, adding a new positive sample will cause an old sample to pop out.

OCST

MS OB BSB BSB NNT

MS OB BSB BSB NNT

MS OB BSB BSB NNT

119 130 151 170 233

130 233 117 119 151

OCST

27 34 50 101 125

34 26 27 125

OCST

10 36 44 100 144

10 44 35 36 38

Lost

Lost

Lost

101

PETS2001

Railway

Parking lot

Fig. 5 Tracking performance comparison on sequences PETS2001, railway, and parking lot. Our method is able to provide accurate tracking while
the other methods like meanshift (MS), online boosting (OB), beyond semiboosting (BSB) and NNT has drifting or inaccurate locating problems. The
comparison between our one-class SVM tracker (OCST) and another certain tracker can be obtained in the frame with the identical frame number.

Journal of Electronic Imaging 023002-6 Apr–Jun 2013/Vol. 22(2)

Fu et al.: One-class support vector machine-assisted robust tracking

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 09/06/2013 Terms of Use: http://spiedl.org/terms



4.1 Tracking in Complex Background
Figure 5 shows the comparison results on three sequences:
PETS2001, railway, and parking lot. The challenges of
tracking these sequences are complex backgrounds and
abrupt background changes. MS drifts seriously when sud-
den background changes occur, such as when the pedestrian
in PETS2001 gets out of the grassland and the buddy in rail-
way starts to cross the railroad.

OB combines multiple features, so it is more robust to the
complex background and environmental changes. However,
it still treats tracking as a binary classification problem, and
thus, the tracking rectangle may sometimes drift, leading to
inaccurate locating, as is shown in the 101st frame of the
railway sequence and the 44th frame of parking lot sequence.

The BSB method, which combines an off-line detector,
supervised on-line identifier, and semisupervised tracker,
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Fig. 6 Tracking performance comparison on girl sequence. The tracking errors of different methods are also shown. OCST ¼ one-class SVM
tracker; MS ¼ meanshift, OB ¼ online boosting; BSB ¼ beyond semiboosting; NNT ¼ nearest neighbor tracker.
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Fig. 7 Tracking performance comparison on foreman sequence. The initial frame with tracking box is presented while the tracked face regions of
our method extracted in every three frames are shown on the right. OCST ¼ one-class SVM tracker; MS ¼ meanshift, OB ¼ online boosting;
BSB ¼ beyond semiboosting; NNT ¼ nearest neighbor tracker.
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is sometimes likely to be confused by target appearance
changes. As the pedestrian in PETS2001 gets out of the
grassland, the tracker makes the wrong decision that the tar-
get is lost, and starts to search for the target in frame 118, and
then locates a wrong target in frame 119.

The NNT searches for the region that is nearest to the
original target through computing the Bhattacharyya similar-
ity coefficients17 in feature space. However, the Euclidean
distance may not really characterize the distance in the fea-
ture space, especially in a high-dimensional representation,
so inaccurate locating may happen.

Relatively, our method locates the target more accurately
on these three sequences. Combining the dense HOG feature,
2bitBP feature, and one-class SVM classification, the shape
and texture information are well-extracted, and only the real
target region in the next frame will be found correctly,
regardless of the abrupt background changes or if the sudden
occlusion happens. The comparison between our OCST and
another certain trackers can be obtained in the frame with the
identical frame number in Fig. 5.

4.2 Tracking Part of Human Body
Tracking a certain part of the human body, like the head,
face, or eyes, is very important in identity recognition,
video conferencing, and user interaction. We track some
parts of the human body using the state-of-the-art methods
as well as our OCST method. Usually, tracking certain part
of the human body is tougher than tracking a single object
that is rigid because we should consider the pose changes.

In the girl sequence (Fig. 6), we track the head of the girl.
The challenges include the pan, tilt, zoom control, occlusion
by another face, 360-deg rotation, and the flesh-colored
board in the background. Our method provides more satis-
factory results, even when the head leans and is partially

occluded by some other face, whereas the tracking
rectangles of other methods still drift when some obvious
pose changes occur. As the ground truth of this sequence
is also available,27 we also measure the pixel-wise tracking
errors of these methods. From the curves presented in Fig. 6,
it can be concluded that methods like MS, OB, and NNT
may result in serious drifting when the head leans and
rotates, and the BSB will lose target several times during
the whole tracking process (values of the green dot-dash
curve in Fig. 6 that are rendered 50 indicate the time when
the BSB makes the wrong judgment and the target is lost).
Compared with other methods, our approach provided
steadier tracking with relatively lower error.

In the Foreman sequence (Fig. 7),28 the face is tracked.
Our method also provides impressive tracking result,
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Fig. 8 Tracking performance comparison on surfer sequence. OCST ¼ one-class SVM tracker; MS ¼ meanshift, OB ¼ online boosting;
BSB ¼ beyond semiboosting; NNT ¼ nearest neighbor tracker.

Table 1 Comparison of the number of correctly tracked frames. Best
result(s) in each sequence are highlighted in bold.

Sequence Total frames MS OB BSB NN OCST

PETS2001 250 127 250 117 250 250

Railway 135 73 105 50 125 135

Parking lot 157 5 35 57 37 157

Girl 448 340 406 96 266 448

Foreman 180 180 179 75 110 180

Surfer 367 150 362 103 188 367

Average
accuracy

N/A 54.1% 81.6% 35.2% 64.2% 100%
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regardless of different head poses, exaggerated facial expres-
sion conversions, and partial occlusion by a waving hand
occurs. The initial frame with the tracking box is presented,
while the tracked face regions of our method extracted in
every 3 frames are shown on the right. Comparison between
other state-of-the-art methods and our method on a certain
frame also can be obtained in Fig. 7.

In the surfer sequence (Fig. 8),29 we also track the head.
As this sequence has a relatively monotonous background,
the MS performs better than before, but as abrupt pose
changes occur, the tracker drifts away. Both OB and OCST
perform well on this sequence, noting that in the last frame,
OCST still sticks to the right position.

Finally, Table 1 shows quantitative results for all sequen-
ces. A frame is considered as correctly tracked if the real
target rectangle overlap with the tracking rectangle is larger
than 50%. Thus, this criterion directly shows whether a
tracker presents serious drifting during tracking process. For
our method, slight deviation may be generated in some
frames, but no serious drifting happens in the selected video
sequences.

In summary, our method performs relatively accurate and
stable tracking compared with other compared state-of-the-
art methods. This should be attributed to the ability of one-
class SVM for dealing with high-dimensional data. Besides,
combining dense HOG and 2bitBP features captures the fine
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disappears near the boundary of the scenario, the score curve drops enormously and never comes back.
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shape and texture characteristics of the target. Regarding
tracking as a one-class classification problem may well-
handle the outliers, and contribute to the alleviation of drift-
ing problem to some extent.

4.3 Tracking Score
We also validate our method on the Massachusetts Institute
of Technology traffic data set.30 Figure 9 shows a typical
example. In the first frame, the initial box is given to
bound a white car in the road. In the 30th frame, the white
car is then partially occluded by the lamp post and slightly
overlapped by another car, leading to a corresponding clas-
sification score curve, which is obtained from Eq. (6), drop-
ping down to about 0.7. However, the positive sample pool
of our OCST is updated online, and thus, this appearance
change of the target is overcome by adding new samples
in the training pool in a short time, which leads to the clas-
sification score curve going up.

In the following 99th, 148th, and 282nd frame, the target
is continuously overlapped by some other cars. When the
classification score curve descends, it will come back to
the original level in a short time. So, our system has suitabil-
ity to target appearance modification and partial occlusion. In
the 360th frame, when part of the target get out of the sce-
nario, the classification score curve drops down enormously
below 0.6 (to about 0.3), then to 0.2, and never comes back.
From the value of the classification score curve of the current
frame, one can judge whether or not the object is partially
occluded or disappeared. Actually, when the curve is lower
than 0.3, we can make the decision that the target is disap-
pearing and stop our tracking.

4.4 Adjustment of Parameter v
As v seems to be an important parameter for one-class SVM in
the original theory,11 which controls the size of the estimated
positive feature space, in practice, we have tried different v
values, varying from 0.1 to 0.9. Figure 10 shows the tracking
results (trajectories) under different v values, including 0.1,
0.3, 0.5, 0.7, and 0.9. The left subfigure and right subfigure
are from the aforementioned sequence PETS2001 and Parking
lot, respectively. It could be concluded that under different v
values, the resulting trajectories turn out to be very similar and
nearly overlap each other. This indicates the performance of

our tracker is insensitive to the parameter v of one-class SVM.
The reason should be attributed to the fact that a varied v
would not change the score rank of the candidates too
much. This is natural because the high score candidates are
usually those most inside ones (Fig. 11). When v turns larger,
the sphere will shrink toward the sphere center. As is shown in
Fig. 11, in both cases (small v and large v), the score rank/
order of the candidates does not change too much. So when
we seek the maximum score candidate, the final result also
changes very little (Fig. 10). According to the above conclu-
sion, we typically set v ¼ 0.5 in all experiments, as was intro-
duced at the beginning of this section.

5 Conclusion and Future Works
In this paper, we propose a tracking method using a one-class
SVM. Combining the dense HOG feature and 2bitBP with
a one-class SVM, OCST may well-handle the outliers and
alleviate drifting. Because in this paper OCST is still a
holistic tracker, a challenge for us in the future is trying to
track articulated objects that cannot be easily delineated with
a bounding box. These objects may require a part-based
appearance model, which may let us develop our OCST
for part-based learning.
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