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�We propose novel method to detect infrared small targets in heavy clutter.
� The method can distinguish target region and inhomogeneous region.
� The method needs no prior knowledge and no sensitive parameters.
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a b s t r a c t

Small target detection is a critical problem in the Infrared Search And Track (IRST) system. Although it has
been studied for years, there are some difficulties remained due to the clutter environment such as the
cloud edge and the horizontal line. In the homogeneous area such as sky, cloud-inner area and sea surface
area, target can easily be detected, but in heterogeneous area which contains cloud edge, sky-sea line the
target may be falsely detected. This paper proposes a novel method called accumulated center-surround
difference measure to detect infrared small target in heavy clutter. Each pixel’s accumulated center-
surround difference measure is computed by using sliding window manner. The measure can effectively
distinguish target region and heterogeneous region. Experimental results show our method achieves
better performance.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Small target detection is a critical problem in the Infrared
Search And Track (IRST) system. Although it has been studied for
years [1–5], there are some difficulties remained. The reasons are
as follows: first, features such as texture and color are unavailable
for small targets when they are far away from the infrared sensor.
Second, heterogeneous areas such as cloud edge and sky-sea line
may be falsely detected as small targets.

Background estimation based small target detection method is
widely studied in recent years [6–9]. These methods detect small
targets in the residual image which subtracts the estimation image
from original image. The detection performance depends on how
well the background estimation image can achieve. The 2-D least
mean square (TDLMS) method [6] minimizes the difference
between an input image and a background image that is estimated
by the weighted average of neighboring pixels. The TopHat method
[7] estimates background by a morphological opening operator
with structure element.

Existing background suppression methods for single-frame
infrared image are mainly based on the filtering methods [10,11].
The LS-SVM [11] method uses filter templates, which can suppress
most part of the correlative background but may be easily inter-
fered because of the strong fluctuation of background clutters.

Recently, a small target detection algorithm based on sparse
representation has been proposed [12]. They modeled small infra-
red targets by Gaussian intensity model for dictionary generation,
and solved a sparse l0-minimization problem at any candidate
point of target when a detection window scans over the test image.

The main drawback of conventional filtering based methods for
small target detection is they could not guarantee sufficient sup-
pression ability towards those high frequency components belong-
ing to background, such as strong corners and edges. In recent
years, a method based on local connectedness constrains [13]
was proposed to overcome such problems.

Heterogeneous areas such as cloud edge and sky-sea line make
small target detection more difficult. These methods may achieve
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Fig. 1. Illustration of calculating accumulated center-surround difference measure.
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good results on simple background, but not on heavy clutter back-
ground. The main reason is they cannot distinguish small targets
from heavy clutter effectively. We propose a novel method called
accumulated center-surround difference measure to detect infra-
red small targets in heavy clutter. When compared with TDLMS
[6], TopHat [7], LS-SVM [11], SP [12], LCC [13], our method achieve
better performance, especially in the heterogeneous area.

2. The proposed method

We propose a single-frame infrared small target detection
method. We calculate each pixel’s accumulated center-surround
difference measure. A measure map is obtained, which indicates
the probability of a pixel belonging to target regions. We then
can detect small target by implementing a proper threshold.

Generally, the IR image model can be formulated as:

f ðx; yÞ ¼ f Tðx; yÞ þ f Bðx; yÞ þ nðx; yÞ ð1Þ
a b

Fig. 2. Results of accumulated center-surr

Fig. 3. An IR image and its accumulated center-surround difference measure. From left to
plot.
where f ; f T ; f B; n and ðx; yÞ are IR image, target image, background
image, random noise and pixel’s coordinate, respectively. n is
assumed to follow Gaussian distribution with mean 0 and variance
r2 [8].

According to (1), IR image can be divided into 3 different com-
ponents: target region, homogeneous region and inhomogeneous
region. Homogeneous region usually locates inside the cloud, the
sea surface and the sky, whereas inhomogeneous region may
appear in the sky-sea line and cloud edge. Conventional back-
ground estimation method may regard inhomogeneous region as
target mistakenly, because features of inhomogeneous and target
region are highly similar. Based on the observation above, we pro-
pose accumulated center-surround difference measure to distin-
guish target region and inhomogeneous region.

Fig. 1 describes the proposed accumulated center-surround dif-
ference measure for a certain pixel ði; jÞ . An outer window of the
size N � N and an inner window of the size M �M are defined
around the reference pixel. Along 8 orientations (i.e.
0�; 45�; . . . ; 270�; 315�), the accumulated difference measurement
is carried out respectively.

For example, along 0� orientation the accumulated center-sur-
round difference is:
X

ii¼i
jþM=26jj6jþN=2

s½ðii; jjÞ; ði; jÞ� � jlðii; jjÞ � lði; jÞj ð2Þ

where sð�Þ can be certain monotone increasing function. In this
paper,

s½ðii; jjÞ; ði; jÞ� ¼ 1� e�c�jjðii;jjÞ�ði;jÞjj22 ð3Þ

ði; jÞ is the coordinate of the central pixel (i.e. the reference pixel),
and ðii; jjÞ is active pixel’s coordinate. lð�Þ represents pixel’s inten-
sity. Here M is a constant smaller than N. Accumulated center-sur-
round difference measure can distinguish target region and
inhomogeneous region. Fig. 2 represents results of accumulated
c

ound difference in 3 different pixels.

right: original image, accumulated center-surround difference measure and its 3d-
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Fig. 4. SCRg and BSF of 5 groups of parameters that configurations are M ¼ 3; N ¼ 7; M ¼ 3; N ¼ 9; M ¼ 5; N ¼ 9; M ¼ 5; N ¼ 11; M ¼ 7; N ¼ 11 in 8 different categories
of images.
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center-surround difference measure on 3 different pixels. From left
to right, they are inhomogeneous region, target region and homog-
enous region, respectively. Blue color represents high intensity
region, white color represents low intensity region, purple color
represents a small accumulated value and red color represents a
large accumulated value. When the window is located in the inho-
mogeneous region, e.g. cloud edge, the accumulated center-sur-
round differences along certain orientations are large, as shown in
Fig. 2(a). When center pixel is on the target region, the accumulated
center-surround differences along all orientations are larger, as
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described in Fig. 2(b). When center pixel is on the homogenous
region, the accumulated center-surround differences along all ori-
entations are small, as described in Fig. 2(c).

8-orientation accumulated center-surround differences are
defined as ACSD0–ACSD315. The subscript stands of the angle of
the orientation. Thus, we define accumulated center-surround dif-
ference measure as:

minðACSD0;ACSD45; . . . ;ACSD315Þ ð4Þ

As we can see, 8-orientation results in different pixels contain dif-
ferent distinguishing features. The final accumulated center-sur-
round difference measure is the minimum of the results along all
orientations. Thus, accumulated center-surround difference mea-
sure is large when center pixel is on target region; is small when
center pixel is on inhomogeneous region or homogeneous region.
Fig. 3 represents an IR image and its accumulated center-surround
difference measure. From left to right, they are original image, accu-
mulated center-surround difference measure and its 3d-plot.

We apply accumulated center-surround difference measure on
IR image using sliding window manner, we can obtain a measure
map mði; jÞ of the same size of original image.

We normalize the value mði; jÞ to [0,1]. A large mði; jÞ value indi-
cates that the pixel at ði; jÞ very likely belongs to target region.
3. Experiments

In this section, we firstly introduce the evaluation method and
the methods for comparison in this paper. Then we perform exper-
iments to demonstrate the different effects when using different
parameters of the proposed method. Finally, we compare the pro-
posed method with the baseline methods.

3.1. Evaluation and comparison methods

The most important metrics of evaluating the detection perfor-
mance are ROC curve (receiver operating characteristic curves).
The ROC curve represents the varying relationship of the detection
probability and false alarm rate. This curve can provide a quantita-
tive comparison of the detection performance. Detection probabil-
ity is defined as the ratio of the number of detected pixels to the
0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
pr

ob
ab

ilit
y

False a

0 0.5 1 1.5 2 2.5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

D
et

ec
tio

n 
pr

ob
ab

ilit
y

False alarm rate

Fig. 5. ROC curve of 5 groups of parameters that configurations are M ¼ 3; N ¼ 7
number of real target pixels. False alarm rate defined as the ratio
of the number of false alarms to the total number of pixels in the
whole image. At the same false alarm rate, the higher the detection
probability is, the better the performance of this algorithm is.

To compare the performance of methods quantitatively, signal
clutter ratio gain (SCRg) and background suppression factor (BSF)
are employed and defined as the follows [14]:

SCR ¼ jIt � lbj
rc

; SCRg ¼ SCRout

SCRin
; BSF ¼ rin

rout
ð5Þ

where It is the signal amplitude, lb and rc are the average intensity
and standard deviation of the pixels in the neighboring area around
a reference location (excluding the target), and rin and rout are the
background standard deviations of the original image and the mea-
sure image, respectively.

We choose the TopHat [7] and TDLMS [6] filtering method as
two baseline methods. Moveover, LS-SVM [11] filtering method
is also chosen as the comparison method in this paper since the
method is well studied and has a good performance. In recent
years, two new methods based on sparse representation [12] and
local connectedness constrains [13] were proposed to overcome
the constrain when dealing with heavy clutter. They are chosen
as the comparison methods.

The images chosen in the experiments contain more than one
hundred targets and eight different categories of clutter environ-
ments. We take these images as test data.
3.2. Analysis on effects of parameters

The proposed method have three key parameters: M, N and c: M
determines the size of inner window. The inner window should be
big enough to cover the reference object. N determines the size of
outer window, and must be larger than M. A larger N implies that
more pixels are considered for calculating accumulated center-sur-
round difference and vice versa. We have to make a tradeoff in this
issue: using larger N is robust to outlier and noise contained in pix-
els. However, correlation between pixels decreases when using a
larger N. This will make a false detection in non-target region. A
restriction should be posed on M and N: N �M is set as 4 or 6 in
our experiments. It is a tradeoff between large N and small N. c is
0.5 0.6 0.7 0.8 0.9 1
x 10-4

larm rate

M=3,N=7
M=3,N=9
M=5,N=9
M=5,N=11
M=7,N=11

3 3.5

x 10
-5

; M ¼ 3; N ¼ 9; M ¼ 5; N ¼ 9; M ¼ 5; N ¼ 11; M ¼ 7; N ¼ 11 in test data.
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Fig. 6. SCRg and BSF of 5 groups of parameters that configurations are c ¼ 100; c ¼ 200; c ¼ 300; c ¼ 400; c ¼ 500 in 8 different categories of images.
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the parameter that controls accumulated weights of different pix-
els. Larger value makes difference between weights bigger, and
vice versa.

We carry out two experiments to show the effects of the three
parameters. In the first experiment, we fix c as 500, and choose 5
groups of M and N to test the proposed method. The evaluation
results are shown in Figs. 4 and 5.

From Fig. 4, we can see that BSF in different categories is differ-
ent from each other and SCRg has only slight difference. In each
categories, SCRg and BSF change not significantly.
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Fig. 7. ROC curve of 5 groups of parameters that configurations are c ¼ 100; c ¼ 200; c ¼ 300; c ¼ 400; c ¼ 500 in test data.

Fig. 8. Comparison between 6 methods. Red rectangles contain ground truths of small targets. (a) Original image, (b) ACSDM (our method), (c) LCC, (d) LS-SVM, (e) SR, (f)
TDLMS, and (g) TopHat.

234 K. Xie et al. / Infrared Physics & Technology 67 (2014) 229–236
From Fig. 5, we can see that ROC curve is influenced by both M
and N. From the results, we can see that for M smaller than the
size of the object, a larger N is required to achieve good perfor-
mance. For M equal to or larger than the size of object, smaller
N is helpful.

In the second experiment, we fix M ¼ 5; N ¼ 9, and choose 5
groups of c to test the proposed method, respectively. The evalua-
tion results are shown in Figs. 6 and 7.

From Fig. 6, in different categories, SCRg change slowly with dif-
ferent groups of parameters. But BSF have clear differences. It
implies that different clutter background causes different difficulty
degree of background suppression. For example, heterogeneous
background is difficult to achieve high BSF.

From Fig. 7, we can see that ROC curve only shows minor differ-
ence when using different parameters. Large c makes a better
performance.
3.3. Comparison to baseline methods

Fig. 8 gives comparisons between the proposed method with
parameter configuration of M ¼ 5; N ¼ 9; c ¼ 500 and the base-
line methods TopHat [7], TDLMS [6], LS-SVM [11], SR [12], LCC
[13] whose parameters are well set to achieve their best perfor-
mances in test data. We can see that our method highlights target
region, meanwhile suppresses clutters in background.

To compare the performance of these methods quantitatively,
ROC curve, SCRg and BSF were employed. For LCC could directly
detect small targets from original image, its decision map is a bin-
ary image. We choose SCRg and BSF to evaluate the comparison
performance between the propose method and the rest of 4 meth-
ods, shown in Figs. 9 and 10.

From Figs. 9 and 10, we can see that although our method is not
the best on SCRg and BSF but outperforms all the other methods
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Fig. 9. SCRg and BSF of 5 methods in 8 different categories of images.
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according to ROC curve. LS-SVM and SR could achieve high SCRg
and BSF but they may suppress target area which causes high miss
alarm.
For comparison of method complexity, 6 algorithms are imple-
mented using MATLAB. The algorithms run on 2.4 GHz CPU with
2G RAM, the results are shown in Table 1. In our experiment, all
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Table 1
Comparison of computation time.

Method LCC ACSDM SR LS-
SVM

TDLMS TopHat

Computation
time (s)

1.0139 0.3896 53.6898 0.0477 0.1234 0.0465
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algorithms are performed on 128 � 128 image, the average time
per image is adopted.

4. Conclusions

In this paper, we propose a new small target detection algo-
rithm based on accumulated center-surround difference measure.
Accumulated center-surround difference measure calculates a
measure map to indicate the probability that a pixel belongs to tar-
get region. The experimental results show our method outperforms
other methods.
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