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Abstract Traditional graph-based semi-supervised learning (GBSSL) algorithms usually
scale badly due to the expensive computational burden. The main bottleneck is that they
need to compute the inversion of a huge matrix. In order to alleviate this problem, this
paper proposes Neumann series approximation (NSA) to explicitly approximate the inver-
sion process required by conventional GBSSL methodologies, which makes them compu-
tationally tractable for relatively large datasets. It is proved that the deviation between the
approximation and direct inversion is bounded. Using real-world datasets related to hand-
written digit recognition, speech recognition and text classification, the experimental results
reveal that NSA accelerates the speed significantly without decreasing too much precision.
We also empirically show that NSA outperforms other scalable approaches such as Nyström
method, Takahashi equation, Lanczos process based SVD and AnchorGraph regularization,
in terms of both efficiency and accuracy.

Keywords Semi-supervised learning · Scalability · Neumann series · Error bound

1 Introduction

Semi-supervised learning (SSL) is suitable for the situations where labeled examples are
scarce while unlabeled examples are extremely abundant. Graph-based SSL (GBSSL) has
attracted intensive attention in recent years due to their promising performance and valid
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theoretical basis. Various GBSSL algorithms such as Gaussian field and harmonic functions
(GFHF) [22], local and global consistency (LGC) [21], manifold regularization (MR) [1], lin-
ear neighborhood propagation (LNP) [19], enhanced spectral kernel [12] and semi-supervised
logistic discrimination [8], have been developed in recent years, and representatives of them
are comprehensively reviewed in [23].

One drawback of these methods is that their scalability is rather poor. When a large graph
is built, they have to calculate the inversion of a very huge matrix. This process is extremely
time-consuming, and thus not suitable for large collections. In order to improve the scalability
of SSL algorithms, some accelerating methods have been developed and they are grouped
into three categories:

1. Hyper-graph establishment: Algorithms belonging to this category aim to reduce
the size of graph by choosing a set of representative nodes. Zhu et al. [24] con-
structed the “backbone graph” by combining the generative mixture models and dis-
criminative regularization. Delalleau et al. [3] approximated the training process by
using only a subset of numerous examples. Liu et al. [10] located the critical anchor
points with K-means and designed a regularization algorithm on this “AnchorGraph”
(AGR).

2. Sparse representation: A GBSSL algorithm can be scalable if its solution is sparsely
represented. Garcke et al. [6] proposed discretization technique by a sparse grid method,
Tsang and Kwok [17] developed SLapCVM by using a sparsified manifold regularizer,
and Sinha and Belkin [13] adopted sparse eigenfunction bases when the cluster assump-
tion holds.

3. Inversion approximation:Some researchers attempt to design fast numerical techniques
for inverting a large sparsematrix.Nyström low-rank approximationwas adopted inmany
works, such as those in [5,16,18,20]. Larsen [9] computed the singular value decompo-
sition (SVD) by Lanczos bidiagonalization algorithm with partial reorthogonalization,
which could be used to approximating the inversion of largematrix by combiningwith the
Woodbury matrix identity. Campbell and Davis [2] utilized the LDU factorization, and
followed by Takahashi equation, to approximate the large sparse matrix. Moreover, Fer-
gus et al. [4] adopted eigenvectors corresponding to small eigenvalues of graph Laplacian
to represent the solution, which improved the inversion speed significantly.

The algorithms belonging to the first category sometimes cannot achieve satisfying per-
formance because they discard considerable data information in the graph. The methods of
the second category often need to solve a complex optimization problem, which will defi-
nitely slow down the computational speed. Therefore, the algorithm in this paper is designed
by following the idea of last category and it is named as “Neumann series approximation”
(NSA). We notice that the spectral radius of iteration matrix in a class of GBSSL algo-
rithms, e.g. GFHF, LGC, LNP, is bounded by 1, so it is possible to use Neumann series
[7] to approximate the inversion of the associated large sparse matrices. The error bound of
this approximation is derived so that NSA can be theoretically validated. We demonstrate
the strength of NSA by applying it to traditional GFHF, LGC and LNP algorithms. Massive
experiments including digit recognition, speech recognition and text classification reveal
that compared with [9,10,18] and naïve implementations of original GBSSL algorithms,
NSA obtains satisfying classification results meanwhile needing very little computational
time.
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Table 1 Summarization of
different SSL algorithms on label
propagation

Algorithms Propagating expressions

GFHF [22] f = (I − αW̃)
−1

y, W̃ = D−1W

LGC [21] f = (I − αS)−1y, S = D−1/2 WD−1/2

LNP [19] f = (I − αWLN P )−1y

2 Semi-Supervised Algorithms

Given a set of labeled examples L = {(xi , yi )}li=1 and a set of unlabeled examples U =
{(xi )}l+u

i=l+1, typically with l � u, where xi (1 ≤ i ≤ n, n = l + u) are d-dimensional
examples sampled from an unknown marginal distribution PX , and yi (1 ≤ i ≤ l) are labels
taking values from a binary label set {−1, 1}. A transductive SSL algorithm aims to infer the
labels of u unlabeled examples {yl+1, yl+2, . . . , yl+u} based on the union of L and U .

All examples {(xi )}l+u
i=1 are usually represented by a graph G with the adjacency matrix

denoted as (W)i j = ωi j , in which ωi j = exp
(
−∥∥xi − x j

∥∥2/2σ 2
)
is the RBF kernel. The

degrees of n nodes form a diagonal matrix (D)i i = ∑n
j=1 ωi j , and L = D − W is the graph

Laplacian of G. Then, the label information is propagated from labeled examples to unlabeled
examples on G. Table 1 summarizes the expressions of some representative GBSSL algo-
rithms, i.e., GFHF, LGC and LNP, for label propagation. In Table 1, f = ( f1, f2, . . . , fn)T

records the final classification results and y = (y1, . . . , yl , 0, . . . , 0)T is an n-dimensional
label vector with yi = 1 for positive examples and -1 for negative ones. α is a parameter
usually set to 0.99 [19,21,22].

3 Neumann Series Approximation

From Table 1, we see that the propagating expressions in different algorithms can be cast
into a unified expression:

f = (I − αP)−1y, (1)

where Pn×n = W̃,S,WLN P for GFHF, LGC and LNP, respectively. However, P is a huge
symmetrical matrix and inverting I − αP directly requires O(n3) complexity, so specific
methods are required to lower the computational burden.

Lemma 1 ([14]) If amatrixA has the property that lim
i→∞ (I − A)i = 0, thenA is nonsingular

and its inversion can be expressed by a Neumann series:

A−1 =
∞∑
i=0

(I − A)i . (2)

Theorem 2 The matrix I−αP in (1) satisfies Lemma 1 and its inversion can be represented
by

(I − αP)−1 =
∞∑
i=0

(αP)i . (3)
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Proof According to Lemma 1, we obtain lim
i→∞ [I − (I − αP)]i = lim

i→∞ (αP)i . Because α ∈
(0, 1) and the spectral radius of P, or ρ(P) ≤ 1 [19,21,22], so from the theorem of Perron-
Frobenius [7] we know that lim

i→∞ (αP)i = 0. Therefore, (3) holds and thus we complete the

proof. ��
However, computing the summation of (αP)i from i = 0 to infinity is intractable, so we

simply preserve the first t terms of Neumann series as the approximation of (I − αP)−1,
which arrives at:

(I − αP)−1 ≈ I + (αP)1 + · · · + (αP)t =
t∑

i=0

(αP)t . (4)

Note that P is very sparse when G is a k-NN graph [23], so (4) avoids the inversion operation
by calculating the power of sparse matrix, which is obviously very efficient. Moreover, the
trade-off between efficiency and accuracy is controlled by the parameter t . Larger t usually
leads to better approximation performance while the computational time will become longer.
The details of choosing a proper t will be explained in Sect. 5.1.

4 Error Bound

In this section, we attempt to find the deviation bound of (I − αP)−1 and its approximation.

Theorem 3 The approximation error of NSA is bounded and the following inequality holds:
∥∥∥∥∥(I − αP)−1 −

t∑
i=0

(αP)i

∥∥∥∥∥
F

≤ αt+1√n

1 − α
. (5)

Proof Because P ∈ R
n×n is symmetrical, it can be decomposed as P = U�UT in which U

is an orthogonal matrix and � = diag(λ1, λ2, . . . , λn) is a diagonal matrix containing P’s
n eigenvalues. Then, according to Woodbury matrix identity,

(I − αP)−1 = (I − αU�UT )
−1 = I + αU(�−1 − αI)

−1
UT . (6)

Therefore, the difference between (I − αP)−1 and its approximation is
∥∥∥∥∥(I − αP)−1 −

t∑
i=0

(αP)i

∥∥∥∥∥
F

=
∥∥∥∥∥(I − αU�UT )

−1 −
t∑

i=0

(αU�UT )
i

∥∥∥∥∥
F

=
∥∥∥∥∥Udiag

(
1

1−αλ1
, . . . ,

1

1−αλn

)
UT−Udiag

(
1−(αλ1)

t+1

1−αλ1
, . . . ,

1−(αλn)
t+1

1−αλn

)
UT

∥∥∥∥∥
F

=
∥∥∥∥∥Udiag

(
(αλ1)

t+1

1 − αλ1
, . . . ,

(αλn)
t+1

1 − αλn

)
UT

∥∥∥∥∥
F

=
√√√√tr

[
Udiag

(
(αλ1)

2t+2

(1 − αλ1)
2 , . . . ,

(αλn)
2t+2

(1 − αλn)
2

)
UT

]

=
√√√√

n∑
i=1

(αλi )
2t+2

(1 − αλi )
2 . (7)
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Note thatP is a stochasticmatrix, so {λi }ni=1 ∈ [−1, 1] [19,21,22], therefore (7) ismaximized
when all the eigenvalues of P equal to 1 and

∥∥∥∥∥(I − αP)−1 −
t∑

i=0

(αP)i

∥∥∥∥∥
F

=
√√√√

n∑
i=1

(αλi )
2t+2

(1 − αλi )
2 ≤ αt+1√n

1 − α
. (8)

Therefore, Theorem 3 is proved. Equation (8) also illustrates that the error bound will
decrease with the increase of t (because α ∈ (0, 1)), which is consistent with our general
understanding. ��

5 Experimental Results

In this section, we firstly give some empirical insight into the choice of parameter t , then
NSA will be evaluated on some typical datasets related to handwritten digit recognition,
speech recognition and text categorization. The traditional GBSSL algorithms like Gaussian
field and harmonic functions (GFHF) [22], Local and Global Consistency (LGC) [21], lin-
ear neighborhood propagation (LNP) [19] and other scalable methods including Nyström
approximation (Nyström) [18], Takahashi equation (TE, [2]), Lanczos process based SVD
(SVD)1 [9], AnchorGraph regularization (AGR) [10], serve as the baselines for comparison.
Among them, Nyström and SVD approximate the matrix P, and then employ the Woodbury
matrix identity to further compute the inversion of I−αP, while the remaining methods cal-
culate (I − αP)−1 directly. k-NN graph is adopted in the experiments below, based on which
we observe the classification accuracies and computational time of different algorithms with
the change of labeled set L = {(xi , yi )}li=1. All algorithms are conducted on a working
station with 2.40 GHz Intel Xeon CPU.

5.1 Choice of t

In our algorithm, t is the only parameter to be tuned, which harnesses the approximation
performance and computational complexity. In order to choose a proper t , we observe the
performance of GFHF, LGC, LNP and their combinations with NSAwhen t = 1, 2, 3.Breast
cancer dataset2 that contains 683 valid examples is adopted for illustration. 15-NN graph
is constructed for all algorithms, and the width of RBF kernel σ is set to 1 for GFHF and
LGC. The classification accuracy and time cost w.r.t different l are especially evaluated. For
each l, each of the algorithms is implemented 10 times independently with randomly selected
labeled examples. The final accuracies and time costs are calculated as the mean value of
the outputs of these implementations. This measure is intended to eliminate the influence of
the locations of initially labeled examples on the final output. Note that at least one labeled
example is guaranteed in each class when the labeled sets are generated.

In the first row of Fig. 1, the accuracies of GFHF, LGC and LNPwith error bars are plotted,
and the average time costs for each l are presented in the second row. We observe that by
applyingNSA to the traditionalGFHF,LGCandLNP, the time consuming drops significantly.
However, the accuracy decreases not so much, especially when t = 2, 3. Generally speaking,
NSA (t = 2) andNSA (t = 3) obtain similar encouraging classification accuracies.However,
NSA (t = 3) takes much more time than NSA (t = 2) without significantly improving the

1 Lanczos process based SVD is implemented by using PROPACK, which is available at http://soi.stanford.
edu/~rmunk/PROPACK/.
2 Available at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29.
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Fig. 1 Performances of NSA with different t . The three columns are GFHF, LGC and LNP respectively. The
first row shows the accuracies of GFHF, LGC, LNP and their approximations for t = 1, 2, 3. The second row
illustrates the computational time

classification performance, so t is set to 2 in our NSA algorithm. Note that when the labeled
examples are extremely scarce, NSA with t = 2 may not achieve the comparable accuracy
with standard GBSSL algorithms (e.g. GFHF and LNP in Fig. 1a, c). However, we think the
performance of NSA is still acceptable. Alternatively, the users are suggested to label more
examples before implementing NSA.

5.2 Handwritten Digit Recognition

Handwritten digit recognition is an important branch of optical character recognition (OCR).
We adopt the optical recognition of handwritten digits dataset3 to compare the proposedNSA
with other baselines. This dataset contains 5,620 digital images corresponding to 0 ∼ 9, and
the resolution of each image is 8 × 8 (see Fig. 2a). Therefore, the pixel-wise feature is
described by a 64-dimensional vector with elements representing the gray levels.

All algorithms are conducted on a k-NN graph with k = 15, and the reported results are
averaged over 10 independent runs with randomly selected examples for a given l. The stan-
dard deviations of accuracies are also recorded to see whether NSA is sensitive to the choice
of initially labeled examples. For approximatingP, we retain the eigenvectors associatedwith
the p = 30 dominant eigenvalues of P in SVD. In Nyström, we sample c = 800 columns
uniformly and compute an approximated eigendecomposition of a rank-r (r = 30) matrix.
In AGR, we set the number of anchor points to m = 400 and use Local Anchor Embedding
(LAE) [10] to solve the associated optimization problem.

Figure 2b demonstrates that GFHF+NSA, LGC+NSA and LNP+NSA achieve higher
accuracies than SVD, AGR, TE and Nyström when l changes from small to large. Besides,
no matter how we tune the parameters c and r , we observe that the performance of Nyström
approximation for large sparse matrix is far from satisfactory. This is due to the fact that

3 Available at http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits.
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Fig. 2 Experiment on digit recognition. a Shows some typical examples in the dataset.bPlots the classification
accuracies of various methods

Table 2 Time costs of different
algorithms on digit recognition

Algorithms Times (s)

l = 100 l = 200 l = 300 l = 400 l = 500

GFHF 72.1 72.0 73.2 73.8 73.3

LGC 10.8 10.8 11.1 10.8 10.7

LNP 13.0 13.6 12.8 13.0 12.8

GFHF + TE 2.1 2.1 2.2 2.2 2.2

LGC + TE 2.1 2.1 2.2 2.1 2.1

LNP + TE 3.3 3.3 3.3 3.3 3.3

GFHF + NSA 0.5 0.5 0.5 0.5 0.5

LGC + NSA 0.5 0.5 0.5 0.5 0.5

LNP + NSA 0.4 0.4 0.4 0.4 0.4

Nyström 3.7 4.1 4.0 4.0 3.6

SVD 0.9 0.9 0.9 0.9 0.9

AGR 0.2 0.2 0.2 0.2 0.2

the Nyström approximation only performs well when the approximated matrix is positive
semidefinite. However, the matrix P to be approximated here is usually not positive semi-
definite, which leads to the lower accuracy of Nyström approximation when compared with
other algorithms. Therefore, here we set c and r to relatively small numbers by balancing
both accuracy and efficiency. It is also observed that compared with the original implemen-
tations of GFHF, LGC and LNP, the accuracies of GFHF+NSA, LGC+NSA and LNP+NSA
decrease very little. It is even more significant that the computational time is reduced greatly
as Table 2 shows, which demonstrates the effectiveness and efficiency of NSA empirically.
Besides, we observe that AGR is slightly faster than NSA. Nevertheless its accuracy is far
lower than NSA. In addition, the error bars in Fig. 2b indicate that the accuracy of NSA is
insensitive to the locations of initially labeled examples. Table 2 also reveals that the running
time of all the methods is essentially irrelevant to the increase of l.
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Fig. 3 Classification accuracies of various methods on Isolet dataset

Table 3 Time costs of different
algorithms on Isolet dataset

Algorithms Times(s)

l = 40 l = 80 l = 120 l = 160 l = 200

GFHF 195.7 195.6 196.2 197.2 197.5

LGC 34.6 41.0 41.6 32.8 31.6

LNP 35.7 35.5 35.7 36.2 35.5

GFHF + TE 45.6 44.3 45.3 46.9 47.6

LGC + TE 18.9 19.0 19.2 19.1 19.0

LNP + TE 34.0 32.9 31.8 31.8 31.6

GFHF + NSA 1.1 1.1 1.1 1.1 1.1

LGC + NSA 1.0 1.1 1.1 1.1 1.1

LNP + NSA 1.4 1.4 1.4 1.4 1.4

Nyström 7.5 6.8 7.2 7.9 7.1

SVD 1.9 1.9 1.9 1.9 1.9

AGR 0.9 1.4 1.0 1.0 0.9

5.3 Speech Recognition

In this experiment, we address a speech recognition task using the Isolet dataset4. In this
dataset, 150 subjects are required to pronounce each letter in the alphabet twice. Excluding 3
missing examples, we have total 150× 2× 26− 3 = 7797 examples. Similar to the work in
Sect. 5.2, we compare the accuracies and time costs of all algorithms for different values of l.
We set p = 50 in SVD, c = 150, r = 30 in Nyström and m = 700 in AGR. The accuracies
and computational time of NSA with SVD, AGR and Nyström are presented in Fig. 3 and
Table 3, respectively.

4 Available at: http://archive.ics.uci.edu/ml/datasets/ISOLET.
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Fig. 4 Classification accuracies of various methods on 20 Newsgroups dataset

Figure 3 reveals that the accuracies of all the algorithms can be improved by increasing
the labeled examples, among which GFHF+NSA, LGC+NSA and LNP+NSA obtain
better performance than AGR, SVD, TE and Nyström. Besides, we observe that the standard
deviations of GFHF+NSA, LGC+NSA and LNP+NSA for different values of l are very
small (see the short error bars), which demonstrates again that the approximation results are
very robust to the choice of labeled examples.

Table 3 suggests that the implementations of original GFHF, LGC and LNP on Isolet
dataset take very long time, while all the approximation methods are able to reduce the
computational durations significantly. Comparatively, NSA and AGR are faster than SVD
andNyström, and their time costs remain substantially unchangedw.r.t the variation of labeled
set. Therefore, NSA obtains the highest classification accuracy while only needs very little
running time.

5.4 Text Classification

Text classification is an important application ofmachine learning techniques. 20Newsgroups
dataset5 is adopted to evaluate the performance of NSA and other baselines on text classifi-
cation. This dataset is a collection of 18,846 newsgroups documents, which are partitioned
into 20 different classes. TF-IDF feature [11], which is commonly adopted to represent text
information, is utilized by us to characterize all documents. The parameters of baselines are
p = 50 for SVD, m = 80 for AGR, and c = 800 and r = 50 for Nyström. With randomly
selected labeled sets, we compare the accuracies and time expenditures of all algorithms
mentioned above.

Figure 4 suggests that GFHF+NSA, LGC+NSA and LNP+NSA achieve around 80 %
accuracies for different values of l, which is very close to the real results obtained by con-
ventional GFHF, LGC and LNP. Comparatively, SVD, AGR and Nyström only achieve 70,
60 and 30 % accuracies approximately. Moreover, Table 4 reveals that inverting the large

5 Avialable at http://qwone.com/~jason/20Newsgroups/.
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Table 4 Time costs of different algorithms on 20 Newsgroups dataset

Algorithms Times (s)

l = 1,000 l = 2,000 l = 3,000 l = 4,000 l = 5,000 l = 6,000

GFHF 21826.3 21644.7 21701.3 21808.0 21983.8 21666.4

LGC 2663.7 2653.2 2655.1 2676.2 2646.0 2653.3

LNP 475.7 475.5 475.1 474.6 475.8 489.9

GFHF + TE 3729.2 3765.5 3818.8 3845.3 3809.2 3790.9

LGC + TE 3858.6 3813.3 4584.3 4701.9 4659.7 4632.0

LNP + TE 1148.7 1036.3 1069.7 1067.1 1073.3 1035.1

GFHF + NSA 6.9 7.0 7.0 7.0 7.2 7.1

LGC + NSA 7.2 7.0 7.1 7.1 7.0 7.0

LNP + NSA 7.7 7.8 7.7 7.8 7.8 7.7

Nyström 70.7 64.8 68.1 71.1 67.2 70.1

SVD 9.9 9.9 10.0 9.9 10.2 10.0

AGR 0.05 0.06 0.05 0.05 0.05 0.05

matrices in GFHF, LGC and LNP is extremely time-consuming. LGC+TE and LNP+TE
even need much more computational time than the traditional LGC and LNP. Therefore,
above algorithms are not feasible for large datasets like 20 Newsgroups. However, when we
apply NSA to deal with the inversion operation, the running time is reduced to about 7 s
per conduction, which makes semi-supervised learning tractable for relatively large datasets.
Note that AGR spends less time than NSA, but it cannot yield as high classification accuracy
as NSA (see Fig. 4).

5.5 Complexity Analysis

From the above experiments, we clearly see that NSA saves considerable amount of running
time for various GBSSL algorithms, including GFHF, LGC and LNP. NSA spends most of
its time in computing the square of a sparse matrix, and its complexity is O(s+ s2/n )with s
denoting the number of non-zero elements in the sparse matrix. Comparatively, the original
conduction ofGFHF, LGCandLNP takes O(n3) complexity for inverting a huge n×nmatrix.
The total time complexities of AGR, SVD, TE and Nyström are O(m2n), O(ns), O( 13n

3)

and O(c3 + ncr), respectively. Note that n is usually quite large while s is a very small
number, so we can clearly see that the proposed NSA is able to achieve very competitive
efficiency by comparing the complexities of various algorithms.

6 Conclusion

This paper proposes a simple yet effective method to enhance the scalability of a class of
GBSSL algorithms. By observing that the spectral radius of matrix P is no more than 1,
we adopt Neumann series to handle the inversion of a large sparse matrix. Our method is
named as Neumann series approximation (NSA) and we have theoretically bounded the
error between the results of NSA and direct inversion. Comprehensive experimental results
suggest that NSA can successfully improve the scalability of some typical GBSSL algorithms
by accelerating the running speed without losing much classification accuracy.
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How to make other GBSSL algorithms such as manifold regularization [1] and measure
propagation [15] practical for large scale data is still an open issue, and we will focus on this
point for the future work.
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