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PageRank Tracker: From Ranking to Tracking
Chen Gong, Keren Fu, Artur Loza, Qiang Wu, Member, IEEE, Jia Liu, and Jie Yang

Abstract—Video object tracking is widely used in many real-
world applications, and it has been extensively studied for over
two decades. However, tracking robustness is still an issue in most
existing methods, due to the difficulties with adaptation to envi-
ronmental or target changes. In order to improve adaptability,
this paper formulates the tracking process as a ranking problem,
and the PageRank algorithm, which is a well-known webpage
ranking algorithm used by Google, is applied. Labeled and
unlabeled samples in tracking application are analogous to query
webpages and the webpages to be ranked, respectively. Therefore,
determining the target is equivalent to finding the unlabeled
sample that is the most associated with existing labeled set. We
modify the conventional PageRank algorithm in three aspects
for tracking application, including graph construction, PageRank
vector acquisition and target filtering. Our simulations with
the use of various challenging public-domain video sequences
reveal that the proposed PageRank tracker outperforms mean-
shift tracker, co-tracker, semiboosting and beyond semiboosting
trackers in terms of accuracy, robustness and stability.

Index Terms—PageRank, power method, robust tracking.

I. Introduction

OBJECT tracking is one of the crucial fields of computer
vision. It serves as the foundation of many areas such

as intelligent surveillance, scene understanding and behavior
analysis, etc. The goal of object tracking is to precisely asso-
ciate the target in consecutive video frames while maintaining
its identity. Although video tracking has been and still remains
a subject of extensive research, the issue of robust tracking is
still far from being resolved.

Conventional methods such as optical flow [1], [2], mean-
shift [3], [4], and particle filter [5]–[7] are sensitive to the
changes from target and the environment. Over time it has
become clear that adaptive and stable tracking is difficult to
achieve by simple matching or prediction mechanisms as in
the above methods. In recent years, alternative approach that
formulates tracking as a classification problem has gained
great popularity, and has shown improved robustness for visual
tracking. The representative classification-based methods can
be grouped into three main types.
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1) Multiple instance learning (MIL): This learning strategy
regards training samples as bags containing multiple
instances, and a bag is considered positive as long
as it has at least one positive sample. Babenko et al.
[8]–[10] firstly introduced this learning approach to vi-
sual tracking. Their approach was extended to weighted
MIL (WMIL) tracker [11] by integrating the sample
importance into an efficient online learning procedure.
Ni et al. [12] combined the conventional particle filter
tracker with MIL in order to explicitly handle the false
positive samples.

2) Semi-supervised learning (SSL): The advantage of SSL
is that it can deal with the situations where labeled sam-
ples are extremely scarce, as this learning approach also
utilizes massive unlabeled samples to improve the clas-
sification accuracy. Co-training, graph regularization are
representatives of this learning method [13]. Fang et al.
[14] applied the co-training framework to tracking,
which was extended in [15] by incorporating the third
classifier for ambiguous situations. Harmonic functions
[16] was adapted for tracking [17] to achieve robust
and stable performance. Gong et al. [18] adopted lin-
ear neighborhood propagation (LNP) [19] and achieved
encouraging results. In [20]–[22] online semi-supervised
boosting was used in order to perform feature selection
task, which leads to an improved performance. [23] ex-
ploited the structure of unlabeled data and proposed the
P-N learning algorithm consisting of positive and nega-
tive constraints. P-N learning was adapted in tracking-
learning-detection approach, which was shown to be
effective for face tracking [24]. Other works belonging
to this type include [25]–[27], etc.

3) Combination of trackers: Algorithms with this type usu-
ally contain several, often interactive, trackers. Different
trackers are fused or selected during tracking process so
that their respective strength and complementarity can
be fully utilized. Zhong et al. [28] developed an online
strategy for evaluating the performances of different
trackers in order to solve the chicken-and-egg problem,
and thus guaranteeing all trackers are updated reliably.
Kwon et al. [29] proposed a visual tracker sampler,
which dynamically samples several good trackers from
the tracker space.

Above classification-based trackers have shown promising
performance. However, they mainly have two shortcomings.
Firstly, although the goal of classification-based methods is to
distinguish the target region from complicated background, the
environment varies broadly during the tracking process. As a
consequence, the background cannot be sufficiently described
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by limited negative samples, which may cause erroneous
classification. Secondly, the quantity of positive and negative
samples is imbalanced (the negative samples outnumber signif-
icantly the positive samples), which will probably influence the
tracking results. Nevertheless, though the above three types of
classification-based methods differ from each other and have
some defects, all of them contain a learning procedure, that
is, the trackers are updated continually so that the variations
of both target and environment can be learned timely, which
is a critical step toward robust tracking.

This paper regards tracking as a ranking problem, and a
novel PageRank tracker is proposed, in which robust tracking
is achieved by continually learning the graph in the PageRank
method. To the best of our knowledge, PageRank algorithm
has been already successfully applied to webpage search-
ing [30], multimedia retrieval [31] and document retrieval [32],
but it has not been used for visual tracking. For detailed
introduction of PageRank method, the reader is referred to [30]
and [33].

Applying ranking methodology to tracking has three ad-
vantages. Firstly, the goal of tracking is indeed to find one
unlabeled sample that represents the known target most prop-
erly, which is also the main task of the PageRank technique.
Secondly, the samples collected in tracking process are not
independent and they are subjected to spatial and temporal
constraints [23]. The relationship between the samples can
be perfectly described by the graph in the PageRank tracker.
Thirdly, the sample imbalance does not affect the PageRank
algorithm because the goal of PageRank is to determine
the most relevant sample given the known target. The main
contributions of this paper are summarized below.

1) A suitable application of the PageRank framework to
visual tracking problem.

2) A novel method for graph construction by considering
both neighborhood and pairwise information among
samples.

3) A modified iterative expression for solving the PageRank
vector, that includes historical records of target.

4) A new way for filtering out the false positive outputs.
The remainder of this paper is organized as follows. In

Section II the motivation and framework of the proposed
PageRank tracker are explained. Section III introduces the
algorithm for obtaining transition probability matrix. Power
method for solving the PageRank vector is presented in
Section IV. In Sections V and VI, the methods for target
filtering and labeled set updating are presented, respectively.
Empirical studies of the proposed tracker are subject of
Section VII. Finally, a conclusion is drawn in Section VIII.

II. Overview of the Proposed Method

This section briefly explains how to adapt the traditional
PageRank algorithm to the new tracking domain, and then
we define some useful notations and introduce the complete
tracking framework.

A. From Ranking to Tracking

In the traditional graph-based model, the graph is built as
G = 〈V, E〉 where V is vertex set and E is edge set. The goal

of PageRank algorithm is to rank webpages according to their
relevances with certain queries. Consequently, webpages are
represented by vertices, and the hyperlinks connecting them
are expressed by edges. When it comes to object tracking,
the target regions in previous frames (labeled samples) are
analogous to the query webpages, and the sampled regions
in current frame (unlabeled samples) are analogous to the
potential webpages to be ranked. The task of finding the target
is thus equivalent to finding an unlabeled sample that is most
related to the existing labeled instances. The motivation of the
proposed method is that selecting the target from numerous
unlabeled samples can be formulated in a similar way as
ranking webpages. However, different from ranking webpages,
the “hyperlinks” between samples no longer exist in tracking
application, and thus edges for tracking should be redefined
in new ways. Based on these considerations, in our case V is
the set of labeled and unlabeled samples, and E is the set of
constraints between these samples. More detailed explanations
of this formulation can be found in Section III.

B. PageRank Tracker Framework

According to the core idea explained in Section II-A, a
PageRank tracker is designed as follows. Firstly, the user
manually specifies a target TG in the first frame, then in
the following S − 1 frames (S should not be set very big)
a simple tracker, for example, the mean-shift tracker [3], is
utilized to collect a small amount of positive samples (i.e.
the target tracked by mean-shift in every frame) to establish
labeled dataset LS = {Li|i = 1, 2, · · · , l}. Following this,
the mean-shift tracker is replaced by PageRank tracker. For
each new frame, a large number of unlabeled samples are
collected around the location of the target in previous frame,
which form the unlabeled set US = {Ui|i = 1, 2, · · · , u}. Then
based on the union of US and LS, a graph G is established
with its adjacency matrix named as transition probability
matrix (denoted as P). A power method is used to solve the
PageRank vector f∗, according to which the top-ranked sample
xtop is generated. After that, a score of xtop is calculated by
integrating the recommendation level of ranking process and
its similarity with LS, and xtop is taken as the final target TG

if the score is larger than an adaptive threshold. Finally, the
sample corresponding to the target region is added to LS for
graph updating in the next T frames. This whole procedure is
presented in Fig. 1.

III. Finding Transition Probability Matrix

In the conventional PageRank algorithm, the transition
probability matrix Pn×n (where n is the amount of webpages
in the whole graph) of G is specified by webpages and
hyperlinks. The element pij in Pn×n stands for the probability
of switching from webpage i to webpage j, which satisfies
pii = 0 (1 ≤ i ≤ n) and

∑n
j=1 pij = 1. In the proposed tracking

system, the samples previously regarded as the target are
labeled as positive, and the samples collected during tracking
process are considered as unlabeled, so pij reflects how closely
the sample xi is linked to xj . In other words, pij is the edge
weight xi to xj in graph G. If the whole dataset DS = LS∪US
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Fig. 1. Framework of PageRank tracker.

is denoted by DS = {xi|i = 1, 2, · · · , n, n = l + u}, then it is
possible to use Gaussian kernel function [16] to describe such
an edge weight

pij = exp(−‖ xi − xj ‖2

2σ2
). (1)

Equation (1) reflects the pairwise relationship between
different samples but ignores the neighborhood information
of them. Moreover, the parameter of kernel width σ is also
difficult to choose. An alternative approach for creating graph
was proposed in [19], which assumed that each data point
in the graph can be optimally reconstructed using a linear
combination of its neighbors. Consequently, solving the edge
weights between samples is equivalent to finding the solutions
of the following optimization problem

minpij
εi =‖ xi − ∑

j:xij∈N(xi) pijxij ‖2

s.t.
∑

j pij = 1, pij ≥ 0
(2)

where N(xi) denotes the neighbors of xi, and pij is the
contribution of xij to xi. This method utilises the neighborhood
information of each data point, while ignores the pairwise
relationship.

In order to fuse pairwise information in the graph con-
struction process, (1) is modified as follows. Suppose xij , xik

are two of xi’s K neighbors, and pij , pik are edge weights

accordingly, then the more similar one sample is to xi, the
larger edge weight should be assigned to, namely

‖ xi − xij ‖
‖ xi − xik ‖ =

pik

pij

. (3)

‖ · ‖ in (3) denotes L2-norm. Note that by using this form we
avoid introducing σ by taking xi as a bridge. In fact, (3) can
be rewritten in an optimization expression

min (pij ‖ xi − xij ‖ −pik ‖ xi − xik ‖)2. (4)

Given all these factors, (2) and (4) are integrated into one
expression by summing over all pairs of neighbors of xi

minpij
εi =‖ xi −

K∑
j=1

pijxij ‖2 +

γ
∑K−1

j=1

K∑
k=j+1

(pij ‖ xi − xij ‖ −pik ‖ xi − xik ‖)2

s.t.
∑

j pij = 1, pij ≥ 0.

(5)

The first term of the objective function in (5) is equivalent
to (2), which reflects the local property of xi. The second term
is the summation form of (4), which describes the pairwise
relationship in the neighborhood of xi. The free parameter γ
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balances the weight of these two terms, and it is usually set
to ten. For simplicity, (5) is formulated in a matrix form

minpi
ε(pi) = 1

2 pT
i Hpi + dT pi + q

s.t. Api = b, pi ≥ 0
(6)

where

pi = ( pi1 pi2 · · · piK )
T

and H is a K × K matrix defined by

Hjk =

{
2(‖ xij ‖2 +γ(K − 1) ‖ xi − xij ‖2) j = k

2(xT
ijxik − γ ‖ xi − xij ‖‖ xi − xik ‖) j 
= k

d = ( −2xT
i xi1 · · · −2xT

i xik · · · − 2xT
i xiK )T

q =‖ xi ‖2 A = ( 1 · · · 1 )︸ ︷︷ ︸
K

b = ( 1 · · · 1 )︸ ︷︷ ︸
K

T
.

By solving n standard quadratic programming problems as
(6), vectors p1 to pn are calculated and the adjacency matrix
P is formulated as

P =

⎛
⎜⎜⎜⎝

pT
1

pT
2
...

pT
n

⎞
⎟⎟⎟⎠ . (7)

However, P is usually a reducible sparse matrix, and the
stationary vector solved by the following iterative process may
not exist, so a revision is needed to make P irreducible

P = αP +
1 − α

n
E (8)

where E is an all-1 matrix that has the same size as P. α is in
the range (0, 1) and is usually set to 0.85 in order to achieve the
fastest convergence rate [33]. P is an irreducible and stochastic
matrix with all elements above zero, which constitutes the
transition probability matrix.

IV. Finding PageRank Vector

Based on the transition probability matrix P, this section
aims to calculate the stationary PageRank vector, according to
which the unlabeled samples are ranked. The basic solution
presented in Section IV-A is computational expensive, so an
improved power method is introduced in Section IV-B to
accelerate the processing speed.

A. Basic Solution

One common way to find the PageRank vector is to set the
initial vector π(0)T = 1

n
eT with ei = 1 (1 ≤ i ≤ n), and then

the PageRank vector can be calculated through an iteration

π(t)T = π(t−1)T P. (9)

The irreducible property of P ensures that this iteration con-
verges to a stationary PageRank vector π∗, in which every
element represents the recommendation level of corresponding
webpage. It is widely known that this process is a Markov
chain, namely π∗ is independent of the initial state π(0) [34].

However, there are differences between webpage ranking
and object tracking in terms of the initial state π(0). The final
ranking ordering of webpages should not be influenced by the
π(0) that indicates their initial importance for ranking, because
whether a webpage should be recommended or not, depends
only on how closely it relates to the current query webpage. In
contrast to webpage ranking, the location of target in tracking
depends on the history of target in previous frames, so the
final ranking results should not be irrelevant to π(0). In our
tracking system, elements in π(0) are defined as

π
(0)
i =

{
1
l
, xi = labeled positive

0, xi = unlabeled
(10)

where
n∑

i=1

π
(0)
i = 1.

Therefore, the historical information of the target (labeled
positive samples) is recorded into π(0), which plays an impor-
tant role in finding the PageRank vector. In order to include
this historical information, (9) is modified so that the iteration
is no longer a Markov process

f (t)T = θf (t−1)T P + (1 − θ) f (0)T (11)

where the notation f is equivalent to π in (9) and θ ∈
(0, 1). (11) reveals that f (t)T can be regarded as the convex
combination of initial state f (0)T and the expression simply
representing Markovian idea. It is proved (see Appendix) that
after iterations, (11) finally converges to

f∗T = lim
t→∞ f (t)T = (1 − θ) f (0)T

(
I − θP

)−1
(12)

which suggests that the PageRank vector f∗T not only relates
to transition probability matrix P, but also relies on the initial
information f (0)T as we expected. In the proposed tracking al-
gorithm, convergence criterion is that the ordering of elements’
values in f (t)T does not change for certain successive iterations,
and this measure reduces the iteration times significantly [35].

B. Power Method

In practice, using (11) directly for iteration is inefficient
because in every iteration the power of P, which is a large,
dense matrix, has to be calculated and stored. In order to
address this problem, we substitute (8) into (11), and obtain

f (t)T = θf (t−1)T P + (1 − θ)f (0)T

= θf (t−1)T

(
αP +

1 − α

n
E

)
+ (1 − θ) f (0)T

= θf (t−1)T

(
αP +

1 − α

n
eeT

)
+ (1 − θ) f (0)T

= θ

(
αf (t−1)T P +

1 − α

n
eT

)
+ (1 − θ) f (0)T . (13)

In the above derivation, two basic properties are taken into
account, i.e. E = eeT and f (t−1)T e = 1. By using (13) the
computation of power of matrix is avoided. Moreover, since
P is a sparse matrix, (13) reduces computational complexity
as well as storage requirements. Above process is called the
power method.
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Alternatively, f∗T can also be calculated directly by solving
linear equations. Suppose the stationary vector f∗T is reached,
then the following equation holds

f∗T = θ

(
αf∗T P +

1 − α

n
eT

)
+ (1 − θ) f (0)T (14)

i.e.,

f∗T (I − θαP) = θ
1 − α

n
eT + (1 − θ) f (0)T . (15)

Equation (15) is a nonhomogeneous system of linear equa-
tions that can be used to solve f∗T . However, the complexity
of this way is very high because the coefficient matrix I−θαP
is usually very large. Therefore, we adopt the power method
to work out f∗T .

V. Locating the Target

Given f∗ =
(
f ∗

1 f ∗
2 · · · f ∗

l , f ∗
l+1 f ∗

l+2 · · · f ∗
l+u

)
�

(
F ∗

l , F ∗
u

)
, a simple and straightforward way is to take

the sample that ranks first in F ∗
u (denoted as xtop) as the

target TG. However, a number of experiments reveal that this
top-ranked sample does not always precisely represent the
target region when disturbances happen. Employing these false
positive samples as target will impair the tracking performance
significantly. Because the sample that represents target is
labeled positive for future training, so the erroneous updating
will probably lead to drifting problem. Therefore, a filter is
needed to exclude such inaccurate target location.

Whether xtop can be the valid target depends on two factors:
one is the recommendation level of ranking algorithm, the
other is the similarity between xtop and the previous appear-
ances of target. The elements f ∗

i (i = l + 1, l + 2, · · · , l + u)
in F ∗

u can be regarded as the recommendation scores of xi to
be the target. Therefore, to what degree the top-ranked sample
xtop can be selected as the final target is revealed by f ∗

top.
Moreover, in tracking situation the object should obey the

temporal constraint [23] that its appearance does not vary
significantly during a short time, so if xtop is very similar to
the elements in labeled set LS, then it is very likely to be the
target. Based on this consideration, the similarity between xtop

and LS is defined as

sim
(
xtop, LS

)
=

l∑
i=1

ηi arccos
(
xtop, Li

)
(16)

in which Li (1 ≤ i ≤ l) are the i-th latest records in LS.
arccos

(
xtop, Li

)
represents the similarity between xtop and Li

by calculating the arccosine value of their angles. η ∈ (0, 1) is
the time dampening factor so that the similarity between xtop

and the later Li gains larger weight.
Therefore, a score is defined to evaluate the confidence level

of xtop to be the target, which is formulated as

score
(
xtop

)
= f ∗

topsim
(
xtop, LS

)
. (17)

Low score
(
xtop

)
usually means that PageRank tracker can-

not locate the object accurately. This usually happens when
target is changing appearance or occluded by other objects
significantly. Therefore, similar to that in [18] and [36], an

adaptive threshold is designed to filter out the inaccurate
locations. Suppose score(xtop) in the j’th frame is denoted
as scorej(xtop), then the mean value and standard deviation of
scorej(xtop) in previous T frames are

uT =
1

T

T∑
j=1

scorej(xtop) (18)

σT =

√√√√ 1

T

T∑
j=1

[
scorej(xtop) − uT

]2
(19)

respectively. Here we assume that the scores of xtop in the latest
T frames obey the Gaussian distribution. Therefore, a sudden
drop of score(xtop) that is 2.5σT away from uT indicates the
target is lost, and thus the TG in current frame is determined
by

TG =

{
xtop, uT − score(xtop) ≤ 2.5σT

Lost, uT − score(xtop) ≥ 2.5σT .
(20)

VI. Updating Labeled Set

The samples corresponding to accurate tracking are labeled
as positive and added to LS for graph construction in coming
frames. Although the approach explained in Section V is
very simple, it ensures that graph updating in every frame
is accurate, which is very important for preventing drifting
in self-learning framework like ours. Moreover, out-of-date
samples before T frames are trimmed off from LS in order to
let PageRank tracker learn the latest appearance of object in
time.

VII. Experimental Results

In this section, we firstly demonstrate that the tracking
results can be substantially improved due to the proposed
modifications on the original PageRank algorithm. Then the
performance of the proposed PageRank tracker (abbreviated
as PRT) is compared with other four popular trackers, in-
cluding mean-shift tracker [3], co-tracker [14] semi-boosting
tracker [21] and beyond semi-boosting tracker [22] (abbrevi-
ated as MS, CT, SB, BSB, respectively), by tracking objects
on some challenging public sequences. Finally, the reasons
that our PageRank tracker outperforms above baselines are
briefly discussed. In all the experiments below, we set K = 7,
S = 5, θ = 0.05, η = 0.9 and C = 5 in PageRank
tracker. T is also tuned properly in all the videos in order to
achieve best performance. Gabor feature [37] is adopted and
all feature vectors are reduced to 35 dimensions using principle
component analysis (PCA) to characterize the related samples.

A. Validation of PageRank Tracker

In this paper, three major modifications on the conventional
PageRank method were performed in order to make it appli-
cable to object tracking.

(i) Graph construction: A novel graph construction algo-
rithm is proposed by adding a pairwise term to the
objective function of (2).
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TABLE I

Four Simulations and their Abbreviations

Fig. 2. Validation of the modifications (red: “local, pairwise + revised”; green: “local, pairwise + original”; blue: “local + original”; yellow: “local + revised”).

(ii) PageRank vector acquisition: The original iterative ex-
pression (9) is replaced by (13) because we hold that the
historical information of the target should be considered
for robust tracking.

(iii) Target filtering: A target filtering scheme is proposed
to exclude the possible false positive samples that rank
first.

This section aims to demonstrate that the above three
modifications are critical to accurate tracking through both
qualitative and quantitative evaluations.

1) Proof of (i): In order to illustrate the effect of (i),
we observe the tracking performances under four different
simulations listed in Table I. Simulations 1 and 2 simply
adopt the local information of samples for graph construction,
which is described by (2). Comparatively, Simulations 3 and 4
add the pairwise information to graph establishment [see (5)]
in order to boost tracking performance. For simplicity, the
abbreviations of the four simulations are given in the last
column of Table I. Note that the Simulation 4 is actually the
proposed PageRank Tracker.

We firstly adopt the Pedestrian11 sequence to test the
performances of the above four simulations, and their results
are shown in Fig. 2. It can be observed that if “local +
revised” is adopted, the tracker fails as soon as the man
is occluded by the lamppost (yellow box). However, if the
pairwise term is incorporated to construct the graph G (namely
“local, pairwise + revised” denoted by red box), the revised
PageRank algorithm is able to track the object precisely.
Figure 3 plots the position errors of four simulations according
to the manually annotated groundtruth. The effect of modi-
fication (i) is verified by comparing the red curve with the
yellow one. We see that without the pairwise term, the tracker
suffers from drifting problem after frame 145, which is also

1ftp://ftp.pets.rdg.ac.uk/pub/PETS2001/

Fig. 3. Position error of the four different simulations on Pedestrian1
sequence.

illustrated in Fig. 2. Therefore, the pairwise term added by us
is critical to robust tracking. More interestingly, from blue
and green curves we find that even we adopt the original
iterative expression (9) to obtain the PageRank vector f∗T ,
the performance can be slightly improved by incorporating
the pairwise term. Generally, the proposed PageRank tracker
(“local, pairwise + revised”) represented by red curve obtains
the minimum position error among the four simulations.

We also conduct the four simulations on Pedestrian22

sequence [Fig. 6(a) for example frames], and their position
errors are plotted in Fig. 4. By comparing “local + original”
vs. “local, pairwise + original” and “local + revised” vs.
“local, pairwise + revised”, we observe that the incorporation
of pairwise term decreases the tracking error significantly no
matter (9) or (13) is utilized for iteration.

2http://www.cs.cmu.edu/ yaser/
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Fig. 4. Position error of the four different simulations on Pedestrian2
sequence.

2) Proof of (ii): In Table I, simulation 3 simply uses
the original iterative expression (9) of PageRank algorithm to
obtain the PageRank vector. By contrast, Simulation 4 takes
the revised form (13) for iterative procedure in order to achieve
more encouraging results. Therefore, the improved results
brought by modification (ii) can be observed by comparing the
simulations “local, pairwise + original” with “local, pairwise
+ revised” in Figs. 2–4 (red and green boxes or curves).
In Fig. 2, we see that when the pedestrian is walking from
grassland to road (frames 135–195), the green tracking box
begins to locate the target with slight inaccuracy. However, the
performance is significantly enhanced by replacing the revised
iterative expression (9) with (13). Figs. 3 and 4 also illustrate
that the tracking trajectories of “local, pairwise + revised” are
closer to groundtruth than other simulations on Pedestrian1
and Pedestrian2 sequences.

3) Proof of (iii): To demonstrate the effectiveness of
modification (iii), we apply the proposed PageRank tracker
to tracking the face appeared in Dudek3 sequence. From
Fig. 5 we see that the target is significantly occluded by
the hand during frames 204–225, in which all the samples
should not be taken as targets even though some of them
are perhaps top-ranked by the ranking process. The occlusion
will obviously decrease score

(
xtop

)
, which helps the filtering

scheme in Section V to exclude the samples recommended by
the PageRank algorithm. The 2nd column of Fig. 5 illustrates
the occlusion process, and the top-ranked samples during this
process are presented in the 3rd column. The figure reveals
that the samples that rank first are correctly filtered out by
the modification (iii) when occlusion happens, which reflects
that the proposed filtering methodology can detect the false
positive samples effectively.

B. Resistance to Background Change

Background change is often the key reason for drifting. The
proposed PageRank tracker (PRT) and another four popular
trackers, MS, CT, SB, BSB, are tested on the sequence
Pedestrian2. Fig. 6(a) shows some representative frames for

3http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html

Fig. 5. Target filtering in the occlusion process. (The top-ranked samples
taken as valid targets are surrounded by red rectangles in the third column.
The samples that are filtered out by modification (iii) are not marked by red
rectangles).

comparison. There are two difficulties in this sequence: one is
the sudden background change when the pedestrian steps into
or step out of the black region, the other is the view change of
observing the target when a car is passing by. All the trackers
are able to locate the target precisely at the beginning phase
(frame 10). However, when the pedestrian walks through the
black region (frame 23–50), MS (blue box) and CT (yellow
box) fail immediately, and their tracking boxes are reluctant to
enter into the black region. SB (cyan box) and BSB (magenta
box) also fail to find the target, and thus their tracking boxes do
not appear in these frames. However, BSB is able to redetect
the pedestrian as shown in frames 73 and 84. During the
frames 95–125 when the man begins to go across the road, the
observing view changes and this leads to the tracking failure of
BSB again. In contrast to MS, CT, SB and BSB, the proposed
PRT is not influenced by the background or view changes, and
it tracks the target successfully throughout the sequence. The
curves of trajectory error in Fig. 7(a) also demonstrates this
point.

C. Tracking Object Similar to Background

The trackers are easily confused if the target is very similar
to the background. Fig. 6(b) shows the Stone sequence4 in
which we aim to track a yellow cobblestone located among
many similar cobblestones. PRT and all the baselines are
implemented to see whether they are able to distinguish the
target from the background. Frame 78 reveals that when the

4http://ice.dlut.edu.cn/lu/publications.html
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Fig. 6. Performance comparison of all the trackers (red: PRT; blue: MS; yellow: CT; cyan: SB; magenta: BSB).

cobblestone is moved, CT (yellow box) begins to locate the
target inaccurately. Moreover, BSB (magenta box) and SB
(cyan box) fail to locate the target from frames 92 and 172,
respectively. In frames 388–398, the object is occluded by a
bigger cobblestone moving over it, which leads to the tracking
failure of MS (blue box). Comparatively, our PRT (red box)
exhibits better discriminative ability and outperforms other
baselines in the whole video. The plot of position error with
respect to #frame is presented in Fig. 7(b), which demonstrates
that the result of PRT is very close to the groundtruth.

D. Handling Large Appearance Change

The appearance change of a target is sometimes a note-
worthy obstacle for achieving robust tracking, because under
this situation the tracker will perhaps not identify the previous
target any more. In the Hockey5 sequence, a hockey player
skates quickly to defend the attacker, and his body varies
dramatically all the time. The performances of five trackers
are compared in Fig. 6(c). When the player bends down to

5http://www.vision.ee.ethz.ch/ hegrabne/
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Fig. 7. Comparisons of position error. (a) Pederstrain2 sequence. (b) Stone sequence. (c) Hockey sequence. (d) Foreman sequence. (e) Dudek sequence.
(f) Car sequence.

accelerate (frames 25–100), the tracking box of CT (yellow
box) drifts away form the target, SB (cyan box) cannot decide
the position of the target, and BSB (magenta box) even
locates the wrong target and switches to track the goalkeeper.
Fig. 7(c) also illustrates the tracking failures of above methods.
Comparatively, MS (blue box) and PRT (red box) perform
better on this sequence.

E. Face Tracking Simulations

Face tracking is a popular research topic due to a wide
variety of applications such as identity recognition, video con-
ferencing, human-computer interaction, etc. Fig. 6(d) and (e)
presents the performances of trackers on two public sequences
Foreman6 and Dudek respectively.

The sequence Foreman includes different head gestures,
severe facial expression conversion and partial occlusion by
hand. After a series of vigorous head movements, the yellow
tracking box of CT drifts to somewhere else (frames 91–171);
BSB (magenta box) cannot locate the target in many frames
such as in 74, 111, 156 and 171. SB (cyan box) fails to decide
the position of target in frames 74, 91, 156 and 171 because
the appearance of the object changes drastically. Fig. 7(d)
indicates that PRT also loses target around frame 90 due to
the view change. Generally speaking, MS (blue box) and PRT
(red box) can resist these disturbances and produce relatively
better results than other trackers.

In Dudek sequence, during the frames 25–157 when the face
turns from profile to front gradually, tracking box of CT drifts
away from target. After that, the face is nearly completely
occluded by hand, so MS can hardly implement tracking
precisely. Note that our PRT is also unable to locate the target

6http://media.xiph.org/video/derf/

at this time because score(xtop) is lower than the adaptive
threshold as shown in (20), so no red tracking box appears
in the frame 207. In the practical implementation of PRT,
when the target is lost in current frame, the searching region
in the next frame is enlarged in order to facilitate redetection.
As a result, PRT successfully detects the target again after
occlusion (frame 225), while both MS and SB fail to track
the target precisely. During frames 365–370 when the object
takes off the glasses, our algorithm can also detect the target
vanishing correctly (frame 365). Fig. 7(e) plots the position
error of all the trackers, which suggests that PRT achieves the
best performance. For the visualization purpose, score(xtop) in
every frame is defined as a confidence level, and the variation
of confidence level during the whole sequence is plotted in
Fig. 8(a). The plot reveals that the confidence drops to rela-
tively low level during frames 200–220 and 360–380. These
two periods exactly correspond to the complete occlusion by
hand and glasses removing [Fig. 6(e)]. It suggests that the
score defined by (17) is reasonable, because it can accurately
illustrate perturbations and effectively prevent tracking errors.

F. Dealing with Thermal IR Sequence

Thermal IR image is often used in surveillance applications
at night, of which the image resolution is usually very low.
In the sequence Car7 two similar cars run toward the same
direction, and the second one is the target as Fig. 6(f) shows.
All trackers perform well before the target is occluded by a tall
tree (frame 17). However, after occlusion MS (blue box) and
CT (yellow box) begin to drift from target. SB (cyan box) and
BSB (magenta box) locate the wrong target and begin to track
the first car (frames 59–74). We think the reason is that the

7http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html
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Fig. 8. Confidence level of PageRank tracker. (a) Dudek sequence. (b) Car
sequence.

appearances of two cars are so similar that SB and BSB cannot
make a clear distinction between the two. After the occlusion,
only PRT (red box) finds the second car quickly and accu-
rately (frames 108–243). Above is the first disturbance in this
sequence. The second disturbance occurs around the frame 255
when part of the target is clipped by the edge of image. How-
ever, as soon as the entire car reappears, PRT locates it quickly
and continues to track. This process is revealed by frames
269–280 in Fig. 6(f) and Fig. 7(f). The periods when confi-
dence level drops dramatically in frames 50–90 and 260–280
[Fig. 8(b)] correspond to the two disturbances described above.

G. Discussion

The experiments presented in Section VII demonstrate that
our PageRank tracker is more robust and adaptive than the
remaining methods used for comparison. Our algorithm is
able to handle complicated disturbances during tracking pro-
cess, such as sudden background change, object appearance
change, low image quality, partial or complete occlusion, etc.
PageRank tracker also shows perfect recognition or redetection
ability when target reappears after complete occlusion. These
merits stem from the following reasons:

1) Ranking idea is adopted to choose the best region to
represent the target.

2) Online learning process is incorporated into PageRank
tracker, so that the tracker can know the latest
appearance of target timely. Moreover, the graph is
established by considering both local and pairwise
information, so the relationship among samples can be
expressed more precisely.

3) The methodology of filtering out the false positive
samples ensures that each update of graph G is
accurate, and this is very critical for avoiding drifting
and achieving adaptive tracking.

VIII. Conclusion

This paper proposed a new graph-based tracking methodol-
ogy by regarding visual tracking as a ranking problem. The
PageRank algorithm, which is originally designed for ordering
webpages, is adopted to retrieve the target region from massive
unlabeled samples. The proposed PageRank graph not only
incorporates the pairwise information among samples, but also
exploits the local information of every node in the graph.
Besides, PageRank vector is computed through the modified
power method, which fuses the historical record of target into
the original framework. Finally, we define a confidence score
for the top-ranked samples, based on which a simple yet ef-
fective method for choosing precise target was developed. Our
PageRank tracker was compared with some popular baselines
and its performance was evaluated by different kinds of ex-
periments from both qualitative and quantitative aspects. The
proposed tracker performed encouraging results in tracking
moving objects with sudden background or large appearance
change, multiview face with severe expression change, and
infrared target with full occlusion, etc. In this sense, PageRank
tracker is very effective for robust and stable tracking.

A number of open issues remain. Practically, if more proper
features are fused into our tracking framework, the perfor-
mance is expected to be further improved; algorithmically,
current conduction of PageRank tracker is computational ex-
pensive (3.05 fps for a 20×32 target), so efficient algorithms to
implement PageRank tracker are in demand; and theoretically,
whether other popular ranking methodologies can be applied
to tracking is still to be investigated.

Appendix

Proof of Convergency

This section aims to prove that (11) converges to stationary
PageRank vector f∗T . According to (11)

f (t)T = θf (t−1)T P + (1 − θ) f (0)T

= θ
[
θf (t−2)T P + (1 − θ) f (0)T

]
P + (1 − θ) f (0)T

= . . .

= θtf (0)T P
t
+ (1 − θ) (θt−1f (0)T P

t−1
+ θt−2f (0)T P

t−2

+ · · · + θf (0)T P + f (0)T )

= f (0)T
(
θP

)t

︸ ︷︷ ︸
part 1

+ (1 − θ)
t−1∑
i=0

f (0)T
(
θP

)i

︸ ︷︷ ︸
part 2

. (21)
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Note that P is a positive matrix, and the entries in every row
of P satisfy

n∑
j=1

pij = 1.

According to Perron-Frobenius theorem [38], the P’s
Perron-Frobenius eigenvalue rP equals to 1, hence the spectral
radius of P, i.e. ρ

(
P
)

= 1. Besides, we have limited θ ∈ (0, 1),
thus

lim
t→∞

(
θP

)t
= 0

lim
t→∞

t∑
i=0

f (0)T
(
θP

)i
= f (0)T

(
I − θP

)−1

where I is the identity matrix of the same size as P, so
both part 1 and part 2 in (21) are convergent. Therefore, the
sequence {f (t)T } produced by (11) finally converges to

f∗T = lim
t→∞ f (t)T = (1 − θ) f (0)T

(
I − θP

)−1
. (22)
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