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Abstract—It has been extensively observed that an accurate ap-
pearance model is critical to achieving satisfactory performance
for robust object tracking. Most existing top-ranked methods
rely on linear representation over a single dictionary, which
brings about improper understanding on the target appearance.
To address this problem, in this paper, we propose a novel
appearance model named as “Nonnegative Multiple Coding”
(NMC) to accurately represent a target. First, a series of local
dictionaries are created with different pre-defined numbers of
nearest neighbors, and then the contributions of these dictio-
naries are automatically learned. As a result, this ensemble of
dictionaries can comprehensively exploit the appearance infor-
mation carried by all the constituted dictionaries. Second, the
existing methods explicitly impose the nonnegative constraint
to coefficient vectors, but in the proposed model, we directly
deploy an efficient `2 norm regularization to achieve the similar
nonnegative purpose with theoretical guarantees. Moreover, an
efficient occlusion detection scheme is designed to alleviate
tracking drifts, and it investigates whether negative templates are
selected to represent the severely occluded target. Experimental
results on two benchmarks demonstrate that our NMC tracker is
able to achieve superior performance to state-of-the-art methods.

Index Terms—approximated Locality-constrained Linear Cod-
ing, nonnegative constraint, occlusion detection, visual tracking

I. INTRODUCTION

V ISUAL tracking aims to track the interested object in
a video sequence given its precise location at the first

frame. It plays a significant role in computer vision with
broadly applications, such as video surveillance, human in-
teraction, and vehicle navigation [1], [2]. Although a large
number of approaches such as those in [3], [4], [5] have
been developed, it is still difficult to find a lasting solution
to achieve a robust tracking performance due to its intrinsic
factors (e.g. fast motion, rotation in-plane or out-of-plane,
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and shape deformation) and extrinsic factors (e.g. partial
occlusions, illumination variation, and background clutter).

In visual tracking, satisfactory performance depends on the
accurate appearance modeling for the target. According to
the adopted appearance model, the tracking methods can be
categorized into two classes: generative trackers [6], [7] and
discriminative trackers [8], [9], [10]. The generative methods
attempt to find the most similar candidate region to the target
by the minimal reconstruction error; whereas discriminative
methods cast the tracking problem as a binary classification
problem [11], [12] to separate the foreground target from the
background. Our method belongs to the former one, and in
the next we will briefly review the typical generative trackers.

Extensive research in generative methods demonstrate that
sparse representation has been successfully used in visual
tracking. The rationale of sparse representation based methods
is that the target can be sparsely represented by the atoms in
a dictionary T (e.g. a target template set in visual tracking
area) with a sparse coefficient vector. According to the adopted
representation scheme, these trackers can be grouped into
global template representation [13], [14], [15], local sparse
model [16], [17], [18], joint sparse appearance model [19],
[20], sparse collaborative model [21], and structured sparse
model [22]. These methods learn the target representation
from different cues and thus show promising performance
against various challenging factors. To be specific, in a local
sparse model [16], [17], the local patches within a possible
target candidate are sparsely represented by the patches in
a dictionary. The joint sparse appearance model [19], [20]
exploits the intrinsic relationship among particles to repre-
sent the target jointly. The sparse collaborative model [21]
combines the advantages of generative and discriminative
methods, and thus is able to exploit both holistic templates and
local representations to describe the target. Furthermore, the
structural sparse appearance model [22] not only exploits the
intrinsic relationship among target candidates through sparse
representations, but also retains the spatial structure among the
local patches within every target candidate.

The above sparse representation based approaches are often
used to model the appearance of object through a linear
representation way, in which the mapping relationship between
the original sample space and coding space has been largely
ignored. When the dictionary T is used to represent the target,
the similarity between two samples should be reflected in both
the corresponding dictionaries and coefficient vectors. To be
specific, Local Coordinate Coding (LCC) [23] is proposed
to investigate the relationship among data points. It uses a
set of anchor points to create a dictionary, and each data
point is linearly represented by only a few anchor points.
Locality-constrained Linear Coding (LLC) [24] investigates

http://ieeexplore.ieee.org.
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Fig. 1. Illustration of two tracking results in the sequence Singer1. The good
tracking result (in green) is represented by eight positive template images
(#53, #54, #55, #56, #57, #58, #59 and #60) with nonnegative coefficients. The
bad tracking result (in red) is represented by eight selected positive template
images (#6, #7, #23, #32, #45, #47, #54 and #55) with both positive and
negative coefficients as illustrated by the figure in the top corner.

the similarity between data points and their corresponding
dictionaries. These coding methods have been successfully
incorporated into a visual tracking framework [25], [26], [27].
In [26], the authors apply the histograms of sparse coefficients
encoded by the LLC algorithm and a local optimal searching
scheme for object tracking. Unlike other works, LLC in [28] is
employed for state search instead of appearance modeling. The
sampling procedure is formulated as an optimization problem,
and thus it can be efficiently solved on a convex hull.

However, there are two main drawbacks of these sparse
coding based trackers. First, these methods simply use a fixed
number of k-nearest neighbors to construct the local dictio-
nary. This single dictionary cannot accurately and adequately
capture the appearance of the target due to the insufficient
emphasis on the target appearance information. As a result,
they cannot tackle appearance variations of the target, which
leads to tracking drifts easily. Furthermore, it is usually diffi-
cult to determine the number of neighbors k in advance, and an
improper choice of k may degrade the tracking performance.
Second, there is no nonnegative constraint on the coefficient
vectors, where such constraint, as we shown in this paper, is
essential for better tracking performance. Fig. 1 shows two
tracking results reconstructed by two sets of selected positive
templates in the LLC method with/without the nonnegative
constraint. Although both the good tracking result (in a green
bounding box) and the bad result (in a red bounding box)
are represented by the positive template set with the indices
ranging from #1 to #60, the bad result suffers severe drifts and
contains much background information. This is because the
bad tracking result is reconstructed by some positive template
images with negative coefficients (e.g. #6, #32, and #47),
whereas all the coefficients for the good result are nonnegative.
Therefore, we argue that positive templates with negative
coefficients would lead to an unreliable tracking result.

Based on the above observations, this paper develops a ro-

bust Nonnegative Multiple Coding (NMC) tracker by exploit-
ing an ensemble of multiple dictionaries and the nonnegative
constraint to accurately character the target appearance. The
contributions of this paper are summarized as follows.

1) A series of local dictionaries are built with regards to
different pre-defined numbers of nearest neighbors, and
their related weights are automatically learned in our
NMC model. Thereby, the obtained coefficient vectors
and the ensemble of multiple dictionaries can be learned
in a uniform framework.

2) We demonstrate through both theory and experiments
that the incorporation of `2 norm regularization term to
our NMC model is able to make the obtained coefficient
vector nonnegative. It achieves the similar effect with the
exact nonnegative constraint with the provable guarantee
of the lower bounded regularization parameter.

3) The occlusion detection criterion is proposed to mitigate
drifting problem which investigates whether the negative
templates (i.e. background) are used to represent the
target.

This paper is the extended version of our previous work
[29]. The tracker described here differs from [29] in several
aspects. Firstly, to update the positive template set, PCA-
based vectors and additional trivial templates are used to
represent the target by the approximated LLC method. The
updating scheme is accomplished by gradually absorbing the
latest positive samples and eliminating out-of-date samples.
Secondly, we theoretically prove that the introduced `2 norm
regularization is able to achieve nonnegative effects if its
regularization parameter is larger than a lower bound. Thirdly,
Histogram of Gradient (HOG) feature is introduced into our
tracking framework to improve the performance. Lastly, we
present more experimental results on two benchmark datasets,
and investigate the parametric sensitivity and computational
complexity analysis of the proposed tracker.

The remainder of the paper is organized as follows. Section
II explains the details of the proposed Nonnegative Multiple
Coding model. Section III introduces the proposed NMC track-
er. Section IV shows the evaluation results of the proposed
tracker with other state-of-the-art methods on two popular
benchmarks. Finally, conclusion is given in Section V.

II. NONNEGATIVE MULTIPLE CODING MODEL

In this section, we first provide an overview of the LLC
method that will be used in our NMC model, and then detail
the employed nonnegative constraint and dictionary ensemble.
Particularly, the nonnegative constraint is replaced by the `2
norm regularization term to achieve the similar nonnegative
purpose with theoretical guarantees.

A. Review of LLC and Approximated LLC

The idea of the LLC method [24] implies that if two data
points are close to each other in the original space, they
should be represented by two similar dictionaries, and thus
have similar encoding coefficients. To improve its efficiency,
LLC applies a locality constraint to select similar bases, and
then it learns a linear combination of these bases in the local
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dictionary B with a coefficient vector ci to represent a data
point yi ∈ RM as follows:

min
C=[c1,··· ,cN ]

N∑
i=1

‖yi −Bci‖22 + λ‖di � ci‖22

s.t. 1>ci = 1,∀i = 1, 2, · · · , N

, (1)

where N is the number of data points, and the constraint
1>ci = 1 ensures shift-invariant where 1 denotes the all-
one vector. The distance di = exp(dist(yi,B)

σ ) with σ be-
ing a scale factor parameter is defined by dist(yi,B) =
[dist(yi,b1),dist(yi,b2), · · · ,dist(yi,bN )]>, where the dis-
tance metric dist(yi,bj) represents the Euclidean distance
between yi and bj .

The approximated LLC method [24], as a simplified version
of LLC, takes local sparsity into consideration. To be specific,
it simply selects k nearest neighbors of yi as the local dictio-
nary Bi instead of using the metric dist(yi,B). In this way,
the approximated LLC method not only obtains local similarity
but also achieves sparsity due to the judicious selection of k
nearest neighbors. Hence, a test sample yi can be sparsely
represented by the linear combination of several local base
vectors in the local dictionary Bi with the coefficient vector
ci as follows:

min
ci

‖yi −Bici‖22 s.t. 1>ci = 1,∀i = 1, 2, · · · , N . (2)

of which the closed-form solution is ci = [(B>i − 1y>i )(Bi−
yi1
>)]−11.

B. Nonnegative Constraint on Approximated LLC

Note that, in nonnegative matrix factorization (NMF) [30],
a nonnegative data point is modeled as the nonnegative linear
combination of a set of nonnegative bases, which could
implicitly grab the structure information contained within data
distribution. Therefore it is straightforward to require the
obtained coefficients in our NMC model to be nonnegative.
Specifically, the illustration in the introduction also demon-
strates the superiority of adopting the nonnegative coefficients
(see Fig. 1). In this paper, higher priority is given to adopt the
nonnegative coefficients based on Eq. (2), which is written as:

min
ci

∥∥yi −Bici
∥∥2
2

s.t. 1>ci = 1,

ci ≥ 0, ∀i = 1, 2, · · · , N .

(3)

Several optimization algorithms for such quadratic program-
ming problem with linear constraint have been proposed,
such as interior point method, accelerated proximal gradi-
ent method (APG) [15], and alternating direction method
of multipliers (ADMM) [32]. However, Eq. (3) contains a
nonnegative inequality constraint, so the above methods can-
not yield a closed-form solution here. Consequently, above
iterative algorithms are not very efficient for visual tracking.
To tackle this problem, we introduce a conventional `2 norm
regularization term to replace the nonnegative constraint to
achieve the similar nonnegative effect. The rationality of such

replacement will be theoretically demonstrated in Section II-D
with provable guarantees. Herein, Eq. (3) is reformulated as:

min
ci

‖yi −Bici‖22 + λ‖ci‖22 s.t. 1>ci = 1 , (4)

where λ is the tuning parameter. Let γ be the Lagrange
multiplier for the shift-invariant constraint 1>ci = 1, then
the related Lagrange function can be formulated as:

L = c>i (yi1
>−Bi)

>(yi1
>−Bi)ci + λc>i ci + γ(1− 1>ci) .

(5)
The partial derivative of L with respect to ci is:

∂L
∂ci

= 2(yi1
> −Bi)

>(yi1
> −Bi)ci + 2λci − γ1 . (6)

By using the Karush-Kuhn-Tucker condition, the analytic
solution can be obtained as:

ci =
γ

2
[(B>i − 1y>i )(Bi − yi1

>) + λI]−11 . (7)

Specifically, γ can be further obtained by the shift-invariant
constraint. In this case, we can directly obtain the closed-form
solution ci without employing or designing any inefficient
iterative method for this particular purpose.

C. Ensemble of Multiple Local Dictionaries

With regards to the existing problems, the single dictionary
cannot faithfully represent the appearance of the target. In this
paper, we mainly focus on designing an ensemble of dictionar-
ies to sufficiently capture the appearance information revealed
by the target. The local dictionaries (B1

i ,B
2
i , · · · ,Bm

i ) for
every sample yi with different numbers of nearest neighbors
are constructed by:

min
c1
i

‖yi −B1
i c

1
i ‖22 s.t. c1i ≥ 0, 1>c1i = 1;

min
c2
i

‖yi −B2
i c

2
i ‖22 s.t. c2i ≥ 0, 1>c2i = 1;

· · ·
min
cm
i

‖yi −Bm
i cmi ‖22 s.t. cmi ≥ 0, 1>cmi = 1.

,

(8)
where Bj

i ∈ RM×kj is established from the sample yi’s kj
nearest neighbors, and the associated coefficient vector is cji ∈
Rkj . After obtaining these coefficient vectors (c1i , c

2
i , · · · , cmi ),

the next step is to accurately integrate these vectors into a
final coefficient vector. By introducing a weight vector w =
[w1, w2, · · · , wm]>, which satisfies

∑m
s=1 ws = 1 and ws ≥ 0

for s = 1, 2, · · · ,m, the weight vector w can be obtained by
optimizing the following objective function:

min
w

∥∥yi − m∑
j=1

wj(B
j
ic
j
i )
∥∥2
2

s.t. 1>w = 1, wj ≥ 0 ∀j = 1, 2, · · · ,m.

. (9)

Furthermore, by defining D = [B1
i c

1
i ,B

2
i c

2
i , ...,B

m
i cmi ] ∈

RM×m, we formulate Eq. (9) as:

min
w

∥∥yi −Dw
∥∥2
2
s.t. 1>w = 1, wj ≥ 0 ∀j. (10)

This objective function shares the same expression as the
approximate LLC problem with the nonnegative constraint in



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2017.2708424, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. **, NO. **, ** 2017 4

Eq. (3). Hence, an `2 norm regularization term can be added
to Eq. (10) to achieve a similar nonnegative effect, that is:

min
w
‖yi −Dw‖22 + β‖w‖22 s.t. 1>w = 1, ∀j, (11)

where β is the regularization parameter. Similar to the solution
of Eq. (4), the optimal w of Eq. (11) is w = [(D>−1y>i )(D−
yi1
>) + βI]−11.

D. Theoretical Analysis on `2 Norm Regularization

As mentioned in Section II-B, the adopted `2 norm regu-
larization shows the similar effect with the hard nonnegative
constraint. In this section, we theoretically demonstrate the
requirements for the nonnegative coefficient vector with theo-
retical guarantees. As both Eqs. (4) and (11) incorporate the
`2 norm to generate nonnegative coefficient vectors ci and w
respectively, here we study their general formation, namely:

min
x
‖y −Bx‖22 + α‖x‖22 s.t. 1>x = 1 , (12)

where y is a data point, B ∈ RM×k is the base matrix, x
is the coefficient vector, and α is the tuning parameter that
represents λ and β in Eqs. (4) and (11) respectively. Likewise,
the optimizer of Eq. (12) is:

x = [(B> − 1y>)(B− y1>) + αI]−11 . (13)

By defining A = B − y1> and F = (A>A + αI) ∈ Rk×k,
the solution in Eq. (13) can be reformulated as:

x = (A>A + αI)−11 = F−11 . (14)

Specifically, when α is extremely large, the optimization
problem in Eq. (12) approaches to the following problem:

min
x

α‖x‖22 s.t. 1>x = 1 . (15)

It is obvious that the minimizer of Eq. (15) is x1 = x2 =
· · · = xk = 1

k . This formula implies that when the tuning
parameter α approaches to infinity, the elements in x tend to
be nonnegative and equivalent. It means that, there must exist
a lower bound of α that ensures the coefficient vector x to
be nonnegative. Next the following theorem will demonstrate
how to compute this bound.

Theorem 1. Let A>A be a k× k matrix, then the coefficient
vector x = (A>A + αI)−11 in Eq. (13) is nonnegative if α
satisfies:

α ≥ (k + 1)
∥∥A>A− 2Γ

∥∥
∞ + k

∥∥A>A∥∥∞ , (16)

where Γ is a diagonal matrix with its ith diagonal element
(A>A)ii.

Proof. The proof is presented in Appendix A.

Theorem 1 theoretically demonstrates that replacing the
nonnegative constraint by `2 norm regularization term is
reasonable and effective if α is lower bounded. Therefore, in
all experiments we simply set α (i.e. λ and β) to be its lower
bound rather than empirically choosing this parameter.

III. NONNEGATIVE MULTIPLE CODING TRACKER

Visual tracking problem is usually formulated as a particle
filter framework [35], [31]. The implicit rationale behind par-
ticle filter is to estimate the posterior distribution p(xt|y1:t),
which can be approximately computed by a finite set of ran-
domly sampled particles. Given some observed image patches
at the tth frame y1:t = {y1,y2, ...,yt}, the state of the target
xt can be estimated recursively by the following two stages:

Prediction: p(xt|y1:t−1)=

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

Updating : p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1).
(17)

By defining the target state xt = [lx, ly, θ, s, α, φ]>, where
lx, ly , θ, s, α, and φ denote the translations in the di-
rection of x and y, rotation angle, scale, aspect ratio, and
skew respectively, we apply the affine transformation with
the above six parameters to model the target motion. The
motion model p(xt|xt−1) represents the state transition of the
target between two consecutive frames. The observation model
p(yt|xt) denotes the likelihood of the observation yt at state
xt. In our method, the observation model is formulated by our
NMC model, which reflects the similarity between a candidate
sample and the target templates. The optimal state at the tth
frame is obtained by maximizing the posterior probability:

x∗t = argmax
xi
t

p(yit|xit)p(xit|xt−1), i = 1, 2, · · · , N, (18)

where xit is the ith sample of the state xt, and yit is a candidate
sample predicted by xit.

Here we briefly introduce how to obtain the templates
module in the beginning frames of a video sequence. To
better capitalize on the distinction between the foreground and
background, plenty of negative templates are collected apart
from positive templates. In other words, the template set T
contains positive and negative template sets, defined as Tpos =
[T1,T2, ...,Tp] and Tneg = [Tp+1,Tp+2, ...,Tp+n], where
p and n denote the numbers of positive and negative templates
respectively. The base dictionary Bi = [Bpos

i ,Bneg
i ] ∈ RM×k

is built by selecting k nearest neighbors of a candidate sample
yi from the template set T.

A. Observation Model

The proposed NMC model outputs a coefficient vector c to
calculate the reconstruction error ‖y − Tc‖22 that represents
the similarity between a candidate and the target. A small
reconstruction error indicates that the test sample y is similar
to the target with a high probability, and vice versa. The
detailed implementation issues are explained as follows.

Under the aforementioned results, the local dictionary
Bj
i ∈ RM×kj is established by kj (j = 1, 2, · · · ,m) nearest

neighbors of a candidate sample yi, which are selected from
the template set T. To record the selected templates in Bj

i ,
we define a selection vector dji ∈ Rp+n of which the
dimensionality equals to the number of templates. Thereby
cji ∈ Rkj in Eq. (8) is plugged into dji where the locations
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of these kj elements correspond to the indices of the selected
templates in T.

After that, once the weight vector w and the coefficient
vector dji are successfully obtained, the final coefficient vector
di ∈ Rp+n is a linear combination of dji (j = 1, 2, · · · ,m)
weighted by the elements in the vector w. The final coefficient
vector di is solved by Algorithm 1.

Algorithm 1: Algorithm for the final coefficient vector di
Input: a candidate yi, local dictionaries:

B1
i ,B

2
i , · · · ,Bm

i .
Output: the final coefficient vector di related to yi.

1 Set: iteration number η.
2 for j = 1 : m do
3 Compute cji by Eq. (4);
4 Obtain the selection vector dji ;
5 end
6 Solve the weight vector w by Eq. (11).
7 Obtain the final coefficient vector di =

∑m
j=1 wjd

j
i .

In our method, di ∈ Rp+n is divided into two parts: di =
[dposi ;dnegi ] with respect to Tpos and Tneg respectively, where
dposi ∈ Rp and dnegi ∈ Rn. Then the observation model for
the candidate yi

1 is formulated as:

p(yi|xi) ∝ exp(−ψ(εposi − εnegi )) , (19)

where εposi = ‖yi − Tposdposi ‖22 is the reconstruction error
between the candidate yi and the positive template set Tpos.
Likewise, εnegi = ‖yi−Tnegdnegi ‖22 is the reconstruction error
between the candidate yi and the negative template set Tneg .
The parameter ψ is a normalization factor fixed to 2.5 in our
experiments.

B. Occlusion Detection Scheme

In tracking process, severe occlusion is one of the most
significant issues which lead to tracking drifts or failures.
Therefore, designing a suitable occlusion detection module is
important to ensure accurate appearance modeling and avoid
unexpected tracking drifts.

Generally, the target without occlusions will be entirely rep-
resented by positive templates. If the target suffers from severe
occlusions, negative templates will be selected to represent
the target with a high probability. Such scenario motivates us
to propose an efficient approach to detect severe occlusions.
The occlusion detection criterion is mainly based on whether
negative templates are selected to represent the tracking target.
If several negative templates are used to reconstruct the target,
the target probably suffers from serious occlusions, and vice
versa. In the proposed NMC tracker, if more than one negative
template (the number of selected negative templates is denoted
as Num(neg∗)) are used to represent the target, the target
in the current frame is regarded as “occluded”. In this case,
the model updating should be strictly prohibited, otherwise
the appearance model would be contaminated by inaccurate
positive templates.

1Note that the time index t is omitted for simplicity.

Positive Templates Negative Templates

Fig. 2. An occluded target in the sequence FaceOcc1 represented by six
positive templates and four negative templates with nonnegative coefficients.

...

Codebook

...
Positive template set

First‐in and First‐out

The optimal 
candidate 

The reconstructed 
sample 

...B

Fig. 3. Template updating scheme for positive template set.

Fig. 2 shows an intuitive example of an occluded target
represented by the templates. At frame #528, the target is
recognised as “occluded” because a considerable amount of
negative templates (i.e. 4) are participated in constructing
the target. In this case, the current tracking result cannot
be used for model updating as explained above. Apart from
this qualitative explanation, the quantitative results are also
provided to verify such criterion in Section IV-D.

C. Template Updating Scheme

Usually, tracking with fixed templates is prone to fail in
dynamic scenes due to the inevitable appearance changes.
However, constantly updating the template set easily leads
to error accumulation and tracking drifts. According to this,
we propose an incremental updating scheme for the positive
template set based on the approximated LLC method. The
flowchart of this updating scheme is shown in Fig. 3. Similar
to [37], the estimated target can be modeled by a linear combi-
nation of PCA base vectors and additional trivial templates. In
the proposed NMC tracker, the local dictionary B is composed
of k nearest neighbors of the optimal candidate y∗ from the
codebook as shown in Fig. 3, which arrives at:

y∗ = Bc = Ux + e =
[
U I

]︸ ︷︷ ︸
,B

[
x
e

]
(20)

where y∗ is the current optimal candidate sample, U is the
matrix composed of PCA base vectors in the local dictionary
B, x is the corresponding PCA coefficient vector, and e is
assumed to be sparse noise. The coefficient vector c can
be obtained by Eq. (4) in the proposed NMC model. In
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this formula, we use the reconstructed sample yrs = Ux
for positive template set updating rather than the current
optimal candidate y∗. Compared to directly using the current
tracking result y∗ with the reconstruction error smaller than
a pre-defined threshold as in [29], in the proposed template
updating scheme, the appearance model can effectively avoid
being contaminated when the optimal candidate y∗ is slightly
occluded. For example, in Fig. 3, the reconstructed sample yrs
is much more accurate than the optimal candidate y∗.

Furthermore, to save the storage space and reduce the
computational cost, the “First-in and First-out” procedure is
used to maintain the number of positive templates. In this way,
the newly reconstructed sample yrs is added to the template
set, while the oldest positive template is thrown away.

If the occlusion is not detected, the positive and negative
template sets are normally updated every 5 frames by our
template updating scheme. Once an occlusion is detected, the
positive template set should stop updating, while the negative
template set is still regularly updated for every 5 frames.

Finally, the flowchart of the NMC tracker is summarized in
Algorithm 2.

Algorithm 2: Algorithm for the NMC tracker

1 Initialization: Extract templates T in the first 5 frame.
2 for t = 6 to the end of the sequence do
3 N particles Y1:N are sampled;
4 for i = 1 : N do
5 Construct local dictionaries B1

i , B2
i ,...,Bm

i for
each candidate yi;

6 Obtain di by Algorithm 1;
7 Calculate the likelihood of yi by Eq. (19) in the

observation model;
8 end
9 Obtain the optimal candidate y∗ and the

reconstructed sample yrs by Eq. (20);
10 Update: for each 5 frames do
11 Update the negative template set Tneg;
12 if Num(neg∗) ≤ 1 then
13 Update the positive template set;
14 end
15 end
16 end

IV. EXPERIMENTS

This section evaluates the proposed NMC tracker on two
benchmarks including Princeton Tracking Benchmark (PTB)
[38] and Object Tracking Benchmark (OTB) [39]. We perform
an extensive comparison of our NMC tracker with the existing
state-of-the-art trackers on two benchmarks. The compared
methods include SST [22], KCF [10], LNLT [25], and IMT
[40]. In addition, the results on parameter sensitivity and
computational complexity analyses are also provided.
Setup: The proposed NMC tracker was implemented in Mat-
lab on a PC with Intel Xeon E5506 CPU (2.13 GHz) and
24 GB memory. The following parameters were used for our
tests: each sample (i.e. the patch of image) was normalized to

32× 32 pixels (M = 1024); the number of positive templates
and negative templates p and n were set to 100 and 150
respectively; three local dictionaries (i.e. m = 3) were selected
with three different numbers of nearest neighbors k1 = 5,
k2 = 8, and k3 = 10; the tuning parameters λ and β for `2
norm regularization were chosen by Eq. (16); In the template
updating scheme, the number of PCA base vectors was set
to 16, and eight nearest neighbors from the codebook were
selected to represent the optimal candidate y∗.
Evaluation metrics: In PTB and OTB, two fundamental
metrics namely mean center location error (CLE) and the
Pascal VOC Overlap Ratio (VOR) [41] are used to evaluate
the tracking performances of all the compared methods. CLE
is defined as the pixel distance between the centroid of the
tracking result and the ground truth, in which small CLE
value indicates a precise tracking result. The overlap ratio
measures the overlapping rate between the bounding box
yielded by a tracker and the ground truth box. It is defined
as o = area(RT∩RG)

area(RT∪RG) , where RT and RG denote the area of
bounding boxes of the tracker and ground truth, respectively.

A. Results on PTB
The Princeton Tracking Benchmark contains 95 video clips

collected by both RGB and depth sensors from a standard
Microsoft Kinect 1.0. These sequences are grouped into the
following aspects: target type (human, animal and rigid), target
size (large and small), movement (slow and fast), presence
of occlusion, and motion type (passive and active). For fair
comparison, the proposed tracker is only compared with
RGB competitors without considering the depth information.
The nine colored trackers includes KCF [10], Struck [42],
VTD [43], CT [44], TLD [45], MIL [46], SemiB [47], RGB-
det [38] and OF [38].

The average overlap ratio and ranking results of these
methods are shown in Tab. I. One can see that our method
ranks first, and it is followed by the KCF tracker. From
the target type aspect, the proposed NMC tracker performs
better on human and animal target than KCF method due to
an accurate appearance model. Besides, the proposed tracker
achieves promising performance in terms of target size, fast
movement, occlusion, and active motion when compared with
other methods.

B. Results on OTB
Object Tracking Benchmark includes 29 trackers evaluated

on 51 sequences with accurate bounding box annotations. Two
evaluation criteria are used in OTB: precision plot and success
plot. Both two criteria show the percentage of successfully
tracked frames based on the two metrics CLE and VOR
mentioned above under different thresholds. In precision plot,
the tracking result in a frame is considered successful if the
CLE falls below a pre-defined threshold. In success plot, the
target in a frame is declared to be successfully tracked if the
current VOR exceeds a certain threshold. Two ranking metrics
are used to evaluate all compared trackers: one is the Area
Under the Curve (AUC) metric at the success plot, and the
other is the precision score at threshold of 20 pixels for the
precision plot.
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TABLE I
RESULTS ON THE PRINCETON TRACKING BENCHMARK: SUCCESS RATES AND RANKINGS (IN PARENTHESES) FOR DIFFERENT SEQUENCE

CATEGORIZATIONS. THE BEST TWO RESULTS ARE HIGHLIGHTED BY GREEN AND RED, RESPECTIVELY.

Method Avg. target type target size movement occlusion motion type
Rank human animal rigid large small slow fast yes no passive active

Ours(HOG) 1.36(1) 0.46(1) 0.52(1) 0.59(2) 0.52(1) 0.58(1) 0.59(2) 0.49(1) 0.44(1) 0.67(2) 0.62(2) 0.50(1)
KCF [10] 1.63(2) 0.42(2) 0.50(2) 0.65(1) 0.48(2) 0.55(2) 0.65(1) 0.47(2) 0.41(2) 0.68(1) 0.65(1) 0.47(2)
Struck [42] 3.73 0.35(3) 0.47(4) 0.53(5) 0.45(3) 0.44(4) 0.58(3) 0.39(3) 0.30(5) 0.64(3) 0.54(5) 0.41(3)
VTD [43] 4.91 0.31(6) 0.49(8) 0.54(4) 0.39(4) 0.46(5) 0.57(4) 0.37(4) 0.28(7) 0.63(4) 0.55(4) 0.38(4)
RGBdet [38] 4.72 0.27(4) 0.41(3) 0.55(3) 0.32(8) 0.46(3) 0.51(7) 0.36(5) 0.35(3) 0.47(8) 0.56(3) 0.34(5)
MIL [46] 6.09 0.32(8) 0.37(5) 0.38(7) 0.37(6) 0.35(7) 0.46(5) 0.31(6) 0.26(4) 0.49(6) 0.40(7) 0.34(6)
TLD [45] 6.91 0.29(7) 0.35(6) 0.44(6) 0.32(7) 0.38(6) 0.52(8) 0.30(8) 0.34(6) 0.39(5) 0.50(9) 0.31(8)
CT [44] 7.0 0.31(5) 0.471(7) 0.37(8) 0.39(5) 0.34(8) 0.49(6) 0.31(7) 0.23(9) 0.54(7) 0.42(8) 0.34(7)
SemiB [47] 8.64 0.22(9) 0.33(9) 0.33(9) 0.24(9) 0.32(9) 0.38(9) 0.24(9) 0.25(8) 0.33(9) 0.42(6) 0.23(9)
OF [38] 10 0.18(10) 0.11(10) 0.23(10) 0.2(10) 0.17(10) 0.18(10) 0.19(10) 0.16(10) 0.22(10) 0.23(10) 0.17(10)

Fig. 4. Success plot and precision plot. The performance score for each
tracker is shown in the legend.

1) Overall performance: To show the overall performance
of the proposed NMC tracker, we compare it with some other
state-of-the-art methods on success plots and precision plots.
The results in Fig. 4 show that the top 10 trackers on success
plot are IMT [40], LNLT [25], SCM [21], SST [22], Struck
[42], TLD [45], ASLA [16], CXT [48] and our two methods
with HOG feature and raw grayscale feature, respectively. The
proposed tracker with HOG feature ranks the first on success
plot and precision plot. Besides, the NMC tracker with raw
grayscale feature also achieves comparable performance with
other state-of-the-art methods.

Apart from the above methods, a representative deep learn-
ing based tracker (DLT) [49] is also incorporated for com-
parisons and its performance is recorded in Tab. II. It can be
observed that the NMC tracker performs better than DLT with
3.8% improvement on average VOR.

2) Attribute based performance analysis: The sequences in
the OTB dataset are annotated by several challenging factors
in visual tracking. To prove the superiority of the proposed
algorithm, we plot the success rates of various methods on
the subsets with eight main attributes (Occlusion, Motion Blur,
Deformation, Illumination Variation, In-plane Rotation, Out-
of-plane Rotation, Background Clutter, and Out of View). The
results shown in Fig. 5 illustrate that the proposed NMC
tracker with HOG feature ranks first or second on these eight
attributes. Specifically, on Deformation attribute, our proposed
method ranks the first and obtains 11% improvement than
the second best tracker on success plot due to an accurate
appearance model. Besides, the occlusion detection scheme
prevents the proposed tracker from updating the positive
templates when the target is heavily occluded. The satisfactory
performance on Occlusion attribute verifies that the template

updating scheme introduced in this paper is effective.
3) Qualitative analysis: Fig. 6 shows the qualitative results

comparing three best baseline trackers on several represen-
tative frames. It can be observed that the proposed tracker
is robust to the occlusions (Suv and Jogging.2), effectively
grabs the appearance changes (Basketball, Freeman1, and
David3), and resists on undesirable illumination variations
(Tiger2) when compared with other baseline methods in these
sequences. Overall, the proposed NMC tracker performs well
on these challenging sequences, and it can be attributed to
an accurate appearance model learned from an ensemble of
multiple local dictionaries, and an effective model updating
scheme to avoid degrading the appearance model.

C. Selection of Regularization Parameters

In this subsection, we firstly analyze the superiority of
the adopted regularization term over the exact nonnegative
constraint on the final tracking performance, and then investi-
gate the influence of different regularization parameters to the
tracking results.

Tab. II compares our NMC tracker with the “Nonnegative”
method using the exact nonnegative constraint. Apart from
high computational complexity, this setting also yields an
inferior performance with 1.1% reduction on success plot
than the proposed NMC tracker. In contrast, the introduced
`2 regularization term is able to effectively avoid over-fitting
and make the coefficient vector more stable.

Besides, to quantitatively analyze the influence of the t-
wo regularization parameters λ and β to the final tracking
performance, we provide the corresponding tracking results
on OTB under different selections of λ and β. Fig. 7 shows
the influence of the tuning parameter λ with different values
0, 0.01, 0.1, 1, 10 on success plot and precision plot. We see
that without any regularization term (i.e. λ = β = 0),
the success rate and precision are extremely low, and these
indicate that the tracker is very fragile. When λ ranges from
0.01 to 10 (β is fixed to 0.1), the success rate and precision
steadily increase to the summit at λ = 1 and then fall down
to a low record. If λ is too small (e.g. λ ∈ [0.01, 0.1]), we
see that the variation of this parameter plays a little role in
determining the final tracking performance. If λ is too large,
it will lead to over-fitting with a large reconstruction error.

The above experimental results suggest that the fixed values
of λ and β will degrade the tracking performance. Therefore,
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TABLE II
AVERAGE CENTER LOCATION ERRORS (CLE) AND AVERAGE VOC OVERLAP RATIO (VOR) ON OTB WITH 51 TASKS.

Method Ours(Gray) DLT [49] Nonnegative M=24×24 M=36×36 k1 = 5 k2 = 8 k3 = 10 K1={3,5,8} K2={8,10,15}

average CLE(pixels) 48.5 61.7 55.3 67.2 52.4 66.3 65.0 78.7 65.1 64.5
average VOR(%) 47.6% 43.8% 46.5% 44.2% 47.1% 43.2% 44.8% 42.7% 44.8% 43.4%

Fig. 5. The curves of success rates of various compared methods on eight main attributes.

      - - - LNLT      - - - SCM      - - - IMT      —— Ours

Fig. 6. The comparison of our method with three best baseline trackers on the challenging frames. Subfigures from left to right, top to bottom: Tiger2, Bolt,
and Shaking; Freeman4, Basketball, and Carscale; Trellis, David3, and Jogging.2; Freeman1, Suv, and Skiing.

in our method the parameter λ is adaptively selected by E-
q. (16), which brings about 2.2% improvement when compared
with the manually tuned λ = 1 revealed by the success plot.
Therefore the automatic way for setting λ presented in Section
II-D is reasonable and effective.

D. Key Component Validation

This subsection validates the effectiveness of several key
components in our tracker.

1) Validation of occlusion detection scheme: The only
difference between the “NoOcc” method and the proposed

NMC tracker is that the “NoOcc” method does not leverage
the aforementioned occlusion detection scheme. Fig. 8 shows
that the average overlap rate of the “NoOcc” method decreases
dramatically from 47.6% to 43.1%, and the average center
location error significantly rises from 48.5 to 70.4. Conse-
quently, we see that the developed occlusion detection scheme
plays an important role in boosting the tracking performance.

Furthermore, we also change the range of the number of
negative templates Num(neg∗) (from 0 to 6) to see its effect on
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Fig. 7. Success plot and precision plot. The success rate and precision of our
proposed tracker under different selections of λ and β.
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Fig. 8. Tracking performance with varying negative templates threshold. The
average CLE and average OP versus the threshold of the number of negative
templates (Num(neg∗)) are illustrated.

the final tracking performance. In Fig. 8, as the threshold of the
number of negative templates increases, the success rate and
precision rapidly increase to the summit at Num(neg∗) = 2,
and then steadily fall down to a low record. If this threshold
is too small, the updating scheme will fail and does not
accommodate variations of the target. In contrast, when the
threshold is large, the occlusion detection scheme would pale
in importance and even cannot prevent the severe occluded
target from updating the appearance model.

2) Numbers of nearest neighbors: Finding an appropriate k
is important because this parameter affects the representation
ability of a local dictionary. If k is selected too small, it is
prone to noise, leading to degradation of the similarity between
candidate samples. A large k might incorporate dissimilar
candidates to construct the local dictionary, which would cause
error accumulation and degrade the tracking accuracy.

We first verify the effectiveness of the ensemble strategy,
and the corresponding results of different numbers of nearest
neighbours for dictionary construction are shown in Tab. II.
We can see that the proposed tracker with an ensemble of
local dictionaries outperforms all settings with a single local
dictionary (e.g. k1 = 5, k2 = 8, and k3 = 10), therefore our
ensemble strategy can fully exploit the advantage of each local
dictionary in the ensemble, and this is the key reason for our
tracker to obtain very impressive tracking results.

In addition, we also compare the results corresponding to
our selected numbers of neighbors (i.e. K = {5, 8, 10}) with
other numbers of neighbors including K1 = {3, 5, 8} and
K2 = {8, 10, 15}. From the results shown in the last two

Fig. 9. Success plot and precision plot. The success rate and precision of our
proposed tracker under different numbers of positive and negative templates.

columns in Tab. II, we see that an ensemble with small k-
nearest neighbors (e.g. K1 = {3, 5, 8}) can hardly tackle
noise and is not robust to challenging factors. The ensemble
with large k-nearest neighbors (e.g. K2 = {8, 10, 15}) models
the target’s appearance inaccurately, leading to an unreliable
tracking performance. Accordingly, a suitable ensemble should
take diverse k-nearest neighbors into consideration to fully
exploit their individual advantages, such as K = {5, 8, 10}.
Tab. II shows that the NMC tracker with the selection of
K = {5, 8, 10} achieves the highest record on average VOR
among all the compared parametric settings, which suggests
that the selected K = {5, 8, 10} in this paper is effective.

3) Numbers of positive and negative templates: We inves-
tigate how the numbers of positive and negative templates
sampled at the beginning of a video sequence affect the final
tracking performance. The corresponding success rate and
precision are shown in Fig. 9, in which “P200N300” denotes
that the number of positive and negative templates p and n are
set to be 200 and 300, respectively. It can be observed that
the insufficient number of positive templates (e.g., “P10N30”)
would incur unsatisfactory performance with a low record,
namely 41.1% on success rate and 57.4% on precision. This is
because that eight templates are selected from only ten positive
templates in this case, and thus the output coefficient vector
by such setting does not achieve sparse effect.

By contrast, numerous positive templates (e.g.,
“P200N300”, “P50N100”) sampled at the beginning frames do
not have significant effects on the final tracking performance.
Specifically, we can see that the “P200N300” setting achieves
48.4% on average overlap rate, which is slightly higher
than our method because much more information has been
taken into consideration. However, because superabundant
templates are involved in the “P200N300” setting, it arrives
at 0.9fps (frame per second), which is twice slower than our
NMC tracker.

4) Size of the image patch: In our experiments, the image
patch is normalized to M = 32 × 32. Here we analyze the
influence of different feature dimensions (i.e., the size of an
image patch) on the final tracking performance. Tab. II shows
the results of two settings with different sizes, where the “M =
36 × 36” method leads to slight fluctuation on the average
CLE and VOR. In addition, the performance of “M = 24 ×
24” method dramatically decreases from 47.6% to 44.2% on
average VOR due to its insufficient feature representation.
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E. Computational Complexity

We present the computational complexity analysis of the
proposed algorithm as well as the existing IVT and `1 tracker.
Assume that the size of the base matrix is M × k, and the
iteration number is η, the computation in the IVT method
involves matrix-vector multiplication and the complexity is
O(Mk). The computational complexity of the `1 tracker for
computing the sparse coefficients using the Lasso algorithm
[50] is O(M2 + Mk). For our method, the base matrix is
obtained from k-nearest neighbors, and the computational
complexity for each candidate is O(k2). Regarding finding
the closed-form solution for each candidate in Eq. (13), the
complexity of matrix-vector multiplication is alsoO(Mk), and
inverting a k × k matrix is O(k3). Thus the complexity of
total operation is O(k3 + Mk). Although the complexity is
mathematically cubic to k, the k in our tracker is set to very
small values such as 5, 8 and 10, so the practical complexity
is not as high as theoretically suggested.

V. CONCLUSION

In this paper, we have proposed a novel Nonnegative
Multiple Coding (NMC) tracker that uses an ensemble of
dictionaries to accurately character the target appearance. In
addition, the nonnegative constraint on the coefficient vector
is replaced by an efficient `2 regularization term to achieve
the similar nonnegative effect. Such approximation has been
demonstrated by the theoretical analysis and experimental
results. Thereby, the obtained coefficient vector and the non-
negative constraint have greatly enhanced the representation
ability for appearance modeling of the target, which effectively
improves the tracking performance. The experimental results
on two benchmarks have verified the rationality of such `2
norm regularization approximation and the ensemble strategy,
and also demonstrated that the proposed NMC tracker achieves
a favorable performance over the state-of-the-art trackers.

APPENDIX A
PROOF OF THEOREM 1

This section provides a proof of Theorem 1.

Proof. Let A>A = U>ΛU, where U is an orthogo-
nal matrix. The diagonal matrix Λ is defined as Λ =
diag(µ1, µ2, · · · , µk), of which the elements are eigenvalues
of A>A. Then F and F−1 can be reformulated as:

F=A>A + αI = U>(Λ + αI)U =
k∑
i=1

(µi + α)u(i)>u(i)

F−1 =(A>A + αI)−1 = U>(Λ + αI)−1U =
k∑
i=1

u(i)>u(i)

µi + α

(21)
where u(i) ∈ R1×k is the ith row of the orthogonal matrix U,
and (Λ+αI)−1 is a diagonal matrix of which the ith diagonal
element is 1

µi+α
. As a result, the coefficient vector x can be

rewritten as:

x = F−11 =
k∑
i=1

1

µi + α
u(i)>u(i)1. (22)

Note that F−1F = I and u(i)u(i)> = 1, we have:
k∑
i=1

u(i)>u(i)1 = u(1)>u(1)1 + · · ·+ u(k)>u(k)1 = 1. (23)

Hence, the ith element of x can be analytically expressed by:

xi =
k∑
r=1

1

µr + α
uri

k∑
j=1

urj ,where
k∑
r=1

uri

k∑
j=1

urj = 1.

(24)
Consequently, our target is to prove that xi in Eq. (24)

is not less than 0 when α satisfies the condition in E-
q. (16). Without loss of generality, we assume that the
first ν elements in Eq. (24) are smaller than zero, that is
uqi
∑k
j=1 uqj < 0 for every q = 1, 2, · · · , ν. The last k − ν

elements are nonnegative, namely uqi
∑k
j=1 uqj ≥ 0 for

q = ν + 1, ν + 2, · · · , k. Therefore xi ≥ 0 is reformulated
to Eq. (25), where P =

∑k
r=ν+1

1
µr+α

uri
∑k
j=1 urj and

Q =
∑ν
r=1

−1
µr+α

uri
∑k
j=1 urj .

Furthermore, by defining that µs = min{µ1, µ2, · · · , µν}
and µl = max{µν+1, µν+2, · · · , µk}, P and Q can be
bounded by:

P ≥ 1

µl + α

u(ν+1)i

k∑
j=1

u(ν+1)j + · · ·+ uki

k∑
j=1

ukj


︸ ︷︷ ︸

,P1

Q ≤ 1

µs + α

−u1i k∑
j=1

u1j − · · · − uνi
k∑
j=1

uνj


︸ ︷︷ ︸

,Q1

(26)
where P1 =

∑k
r=ν+1 uri

∑k
j=1 urj ≥ 0, Q1 =

−
∑ν
r=1 uri

∑k
j=1 urj ≥ 0, and we can easily obtain P1 −

Q1 = 1 from Eq. (24). As a result,

P ≥ 1

µl + α
P1 ≥

1

µs + α
Q1 ≥ Q, (27)

so the tuning parameter α is bounded as follows:

α ≥ −µsP1 + µlQ1. (28)

Furthermore, we divide the proof into two cases.

Case 1. µs ≥ µl, −µsP1 + µlQ1 ≤ −µlP1 + µlQ1 = −µl.

In this case, the lower bound of α can be chosen as α ≥
−µl, which is always satisfied due to α ≥ 0.

Case 2. µs < µl,

− µsP1 + µlQ1 = −µs + (µl − µs)Q1

≤ −µs + (µl − µs)(Q1 + P1)

≤ −µs + (µl − µs)k.
(29)

In Eq. (29), by utilizing the inequalities of arithmetic and
geometric means [33], we have P1 ≤

√
k
∑k
j=ν+1 uji, and

Q1 ≤
√
k
∑ν
j=1 uji, which leads to (P1 +Q1) ≤ k. Thus the

lower bound of α is chosen as:

α ≥ −µs + (µl − µs)k. (30)
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−1

µ1+α
u1i

k∑
j=1

u1j+· · ·+
−1

µν+α
uνi

k∑
j=1

uνj︸ ︷︷ ︸
,Q

≤ 1

µν+1+α
u(ν+1)i

k∑
j=1

u(ν+1)j+
1

µν+2+α
u(ν+2)i

k∑
j=1

u(ν+2)j+· · ·+
1

µk + α
uki

k∑
j=1

ukj︸ ︷︷ ︸
,P

(25)

Furthermore, we discuss the range of eigenvalues µs and
µl to obtain a more elegant bound of α. Based on the
Gerschgorin’s theorem [34], the bounds of µs and µl satisfy:

|µs − (A>A)ss| ≤
k∑
j 6=s

|(A>A)sj |

|µl − (A>A)ll| ≤
k∑
j 6=l

|(A>A)lj |

. (31)

By plugging Eq. (31) into Eq. (30), the right-hand side of
Eq. (30) is transformed to:

− µs + (µl−µs)k≤
k∑
j 6=s

∣∣(A>A)sj
∣∣−(A>A)ss + k(A>A)ll

− k(A>A)ss + k
k∑
j 6=s

∣∣(A>A)sj
∣∣+ k

k∑
j 6=l

∣∣(A>A)lj
∣∣

= (k + 1)

{ k∑
j 6=s

∣∣(A>A)sj
∣∣− (A>A)ss

}
+ k

k∑
j=1

∣∣(A>A)lj
∣∣

= (k + 1)

{ k∑
j=1

∣∣(A>A)sj
∣∣− 2(A>A)ss

}
+ k

k∑
j=1

∣∣(A>A)lj
∣∣

≤ (k + 1)
∥∥A>A− 2Γ

∥∥
∞ + k

∥∥A>A∥∥∞ ,
(32)

which concludes the proof.
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