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a b s t r a c t

In this paper, a novel and robust tracking method based on efficient manifold ranking is proposed. For
tracking, tracked results are taken as labeled nodes while candidate samples are taken as unlabeled
nodes. The goal of tracking is to search the unlabeled sample that is the most relevant to the existing
labeled nodes. Therefore, visual tracking is regarded as a ranking problem in which the relevance
between an object appearance model and candidate samples is predicted by the manifold ranking
algorithm. Due to the outstanding ability of the manifold ranking algorithm in discovering the
underlying geometrical structure of a given image database, our tracker is more robust to overcome
tracking drift. Meanwhile, we adopt non-adaptive random projections to preserve the structure of
original image space, and a very sparse measurement matrix is used to efficiently extract low-
dimensional compressive features for object representation. Furthermore, spatial context is used to
improve the robustness to appearance variations. Experimental results on some challenging video
sequences show that the proposed algorithm outperforms seven state-of-the-art methods in terms of
accuracy and robustness.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Visual tracking is a long standing research topic due to its wide
range of applications such as behavior analysis, activity recogni-
tion, video surveillance, and human–computer interaction [1,2].
Although it has had a significant progress in the past decades,
developing an efficient and robust tracking algorithm is still a
challenging problem due to numerous factors such as partial
occlusion, illumination variation, pose change, abrupt motion,
and background clutter. These factors can lead to wrong associa-
tion, and result in drift and even failure in tracking.

The main tracking algorithms can be categorized two classes:
generative [3–6] and discriminative methods [7–13].

Generative methods focus on searching for the regions which
are the most similar to the tracked targets with minimal recon-
struction errors of tracking. Adaptive models including the WSL
tracker [3] and IVT method [14] have been proposed to handle
appearance variation. Recently, sparse representation methods
have been used to represent an object by a set of trivial target
templates and trivial templates [6,15] to deal with partial

occlusion, pose variation and so on. Therefore, it is critical to
construct an effective appearance model in order to handle various
challenging factors. Furthermore, generative methods discard
useful information surrounding target regions that can be
exploited to better separate objects from backgrounds.

Discriminative methods treat tracking as a classification pro-
blem that distinguishes the tracked targets from the surrounding
backgrounds. A tracking technique called tracking by detection has
been shown to have promising results in real-time. This approach
trains a discriminative classifier online to separate an object from
its background. Collins et al. [7] selected discriminative features
online to improve the tracking performance. Boosting method has
been used for object tracking through combining weak classifiers
to establish a strong classifier to select discriminative features, and
some online boosting feature selection methods have been pro-
posed for object tracking [8,16]. Babenko et al. [9] proposed a
novel online MIL algorithm that achieved superior results with
real-time performance for object tracking. An efficient tracking
algorithm based on compressive sensing theories was proposed by
Zhang et al. [10]. It uses low dimensional features randomly
extracted from high dimensional multi-scale image features in
the foreground and background, and it achieves better tracking
performance than other methods in terms of robustness and
speed. Moreover, although some efficient feature extraction tech-
niques have been proposed for visual tracking [8,10,12], there
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often exist a large number of samples from which features need to
be extracted for classification, thereby entailing computationally
expensive operations [9].

The above tracking methods have shown promising perfor-
mance. However, they have some shortcomings. Firstly, although
the goal of a generative method is to learn an object appearance
model, an effective searching algorithm and an effective measur-
ing method to match candidate samples to an object model are
difficult to obtain. Secondly, background varies broadly during a
tracking process, so it is difficult to achieve the aim of a dis-
criminative method to distinguish a target region from a compli-
cated background when the target looks similar to its background.
Therefore, it is very difficult to construct a discriminative object
representation. Thirdly, feature selection is of crucial importance
for generating an effective appearance model. However, approaches
using a large amount of features make the computational load very
heavy. Therefore, the computational complexity of tracking methods
is rather high, and this limits the real-time applications of these
methods.

Graph-based ranking algorithms have been widely applied to
information retrieval and have proved to have excellent perfor-
mance and feasibility on a variety of data types [17–19]. The
manifold ranking algorithm first constructs a weighted graph by
considering each data node as a vertex. The ranking score of the
query is iteratively propagated to nearby node via a weighted
graph. Finally, nodes will be ranked according to the ranking
scores, in which a larger score indicates higher relevance. In this
paper, we develop a novel and robust tracking method based on
manifold ranking, which regards tracking as a ranking problem. As
shown in Fig. 1, we mark the tracked results as labeled nodes,
while candidate samples are regarded as unlabeled nodes. The
tracking objective is to estimate the corresponding likelihood that
is determined by the relevance between the queries and all
candidate samples. We use a manifold structure to measure the
relevance between a model and samples, and in our method low-
dimensional compressive features can efficiently compress fea-
tures of foreground objects and their background. Experimental
results on some challenging video sequences are demonstrated to
show the effectiveness and robustness of the proposed model and
algorithm in comparison with seven state-of the-art tracking
methods.

The main contributions of this paper are as follows:

1. A novel visual tracking method based on graph-manifold
ranking is proposed.

2. An efficient manifold ranking algorithm is adopted. It can
reconstruct graph efficiently in each tracking round and reduce
the computation complexity.

3. Low-dimensional compressive features of an image are extracted
by a very sparse measurement matrix for object representation.
This matrix preserves the structure of the image and discriminates
objects from their cluttered background effectively.

4. Our method exploits both temporal and spatial context infor-
mation, and it is robust to appearance variations caused by
abrupt motion, occlusion and background clutters.

5. Experimental results show that the proposed algorithm out-
performs seven state-of-the-art methods in terms of accuracy
and robustness.

This is an extension of our paper showing preliminary results in
[20]. The rest of this paper is organized as follows. The graph-
manifold ranking algorithm, the efficient manifold ranking algo-
rithm and low-dimensional compressive features are described in
Section 2. Details of our proposed method based on an efficient
manifold ranking with low-dimensional compressive features are
demonstrated in Section 3. Experimental results are shown and
analyzed in Section 4. The conclusion is presented in Section 5.

2. Preliminaries

2.1. Graph-based manifold ranking

Manifold ranking (MR), a graph-based ranking algorithm, has
been widely applied in information retrieval and shown to have
excellent performance and feasibility on a variety of data types
[17,18]. The manifold ranking method is described as follows:
given a query node, the remaining unlabeled nodes are ranked
based on their relevance to the given query. The goal is to learn a
ranking function to define the relevance between unlabeled nodes
and this query [18,19].

In [19,21], a ranking method that exploits the intrinsic manifold
structure of data for graph labelling is proposed. Given a data set
X ¼ fx1; x2;…; xngARm�n, where m is the dimension of feature
vector and n is the number of data in the data set, some data
points are labelled queries and the rest need to be ranked
according to their relevance to the queries. Let f : X-Rn denote
a ranking function which assigns a ranking value ri to each point xi,
and r be a column vector defined by r¼ ½r1; r2;…; rn�T . Let
y¼ ½y1; y2;…; yn�T denote an indication vector, in which yi¼1 if xi

#1 #2 #3

Object model tracked results

#s

……

Labeled nodes Unlabeled nodes

Sample

#s+1

Object  representat ion by low-dimensional compressive  features

= ( , ) 

= max( )  

#4 Candidates

Fig. 1. Basic flow of our tracking algorithm. A graph is established combining labeled nodes (tracked results) and unlabeled nodes (candidate samples), and ranking scores
represent the relevance between the object model and candidate samples.
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is a query, and yi¼0 otherwise. Suppose all data points represent a
graph G¼ ðV ; EÞ, where V represents vertex set, and edges E are
weighted by an affinity matrix W ¼ ½wij�n�n. The strength of edge
reflects the similarity between two vertices. To find the optimal
ranking of queries, the cost function associated with r is defined as
follows:

OðrÞ ¼ 1
2

Xn
i;j ¼ 1

‖
1ffiffiffiffiffiffi
Dii

p ri�
1ffiffiffiffiffiffi
Djj

p rj‖2þμ
Xn
i ¼ 1

‖ri�rj‖2
0
@

1
A ð1Þ

where μ40 controls the balance of the smoothness constraint
(the first term) and the fitting constraint (the second term), and D
is a diagonal matrix with the element Dii ¼

Pn
j ¼ 1 wij, for

i; j¼ 1;2;…;N. To minimize the cost function, we can obtain the
closed form solution as

rn ¼ ðI�αSÞ�1y ð2Þ
where I is an identity matrix, α¼ 1=ð1þμÞ and S¼D�1=2WD�1=2.
Then, we use the iteration scheme to solve the following optimal
problem:

rðtþ1Þ ¼ αSrðtÞþð1�αÞy ð3Þ
where α is the control parameter, which balances each point's
information between its original and neighbors' information.
During each iteration, each point obtains information from its
neighbors (first term), and retains its initial information (second
term). The iteration process is repeated until convergence.

2.2. Efficient manifold ranking algorithm

In order to efficiently reconstruct graph, we use an efficient
manifold ranking algorithm [19] to compute the ranking score.
When tracking an object, the object has the same appearance in
several consecutive frames, so we can use a small amount of data
points to represent all data points. Moreover, the context of object
tracking has the same appearance in several consecutive frames.
Thus, we can use a small amount of anchor points to represent the
whole data set, as each data point can be locally approximated by a
linear combination of its nearby anchor points.

First, we briefly introduce how to use an anchor graph to model
the data. Given a data set X ¼ fx1; x2;…; xngARm�n, U ¼ fu1;u2;

…;udgARm�d indicates a set of anchors sharing the same space
with the data set. Then, we define a real value function r : X-R,
which assigns a semantic label for each point in X. The aim is to
find a weight matrix that measures the relevance between the
data points in X and the anchors in U. We obtain r(x) for each point
by a weighted average of these labels on anchors as follows:

rðxiÞ ¼
Xd
k ¼ 1

zkirðukÞ; i¼ 1;2;…;n ð4Þ

where
Pd

k ¼ 1 zki ¼ 1 and zki40, in which zki represents the weight
representing the relevance between point xi and an anchor uk. The
weights can be obtained through a Nadaraya–Watson kernel
regression to increase smoothness. The graph construction process
and the means to get the anchors can be found in [19] in detail.

We use a new approach to represent the adjacency matrix W.
The weight matrix ZARdnn can be viewed as a d-dimensional
representation of the data XARmnn, in which d is the number of
anchor points. It means that data points can be presented in a new
space to replace the original feature space. We set the adjacency
matrix as follows:

W ¼ ZTZ ð5Þ
where Wij40 if two points are correlative and they will share at
least one common anchor point, otherwise Wij ¼ 0. The new
adjacency matrix is useful to explore relevance among data points.

Let H¼ ZD�1 and S¼HTH, Eq. (2) can be rewritten as follows:

rn ¼ ðIn�αSÞ�1y¼ ðIn�αHTHÞ�1y¼ In�HT HHT �1
α
Id

� ��1

H

 !

ð6Þ

where In and Id are the identity matrices, they are n� n and d� d
respectively. It is easy to proof that ðI1�αHTHÞ times ðI1�HT

ðHHT �ð1=αÞI2Þ�1HÞ obtains the identity matrix. By Eq. (6), the
inversion computation part has been changed from an n� n matrix
to a d� d matrix. Therefore, the change can efficiently reduce the
computation load for d≪n. As a result, the efficient manifold
ranking algorithm has a complexity Oðdnþd3Þ.

2.3. Low-dimensional compressive features

The Haar-like features have been widely used for object
representation and appearance modeling. They are typically
designed for different tasks such as object detection, and objection
tracking [9,10,22]. However, Harr-like features require high com-
putational loads for feature extraction in training and tracking
phases. Recently, Babenko et al. [9] adopted the generalized Haar-
like features where each one was a linear combination of
randomly generated rectangle features, and used online boosting
to select a small set of them for object tracking. In our tracking
framework, we use the low-dimensional compressive features
proposed by Zhang et al. [10] for the appearance modelling. A
large set of Haar-like features is significantly compressed using a
very sparse measurement matrix. Object representation using the
compressed features preserves the object structure represented in
the original feature space, and these features in the compressed
domain can be applied efficiently.

Given a random matrix RARnnm that projects a high-
dimensional image feature xARm to a low-dimensional feature
vARn

v¼ Rx ð7Þ

where n≪m. Ideally, the matrix R can provide a stable embedding
to preserve the distances between all pairs of original signals. In
other words, lower-dimensional features can recover original
high-dimensional information. The Johnson–Lindenstrauss lemma
[23] states that with high probability the distances between the
points in a vector space are preserved if they are projected onto a
randomly selected subspace with suitably high dimensions. There-
fore, if the random matrix R in Eq. (7) meets the Johnson–
Lindenstrauss lemma, we can reconstruct the original data x with
minimum error from low-dimensional data v with high probabil-
ity when x is compressive such as a video or an image. As such, a
very sparse matrix is used for extracting compressive features, and
it requests only to satisfy the Johnson–Lindenstrauss lemma in the
real-time applications.

A typical measurement matrix satisfying the restricted isome-
try property is the random Gaussian matrix RARnnm, rij �Nð0;1Þ,
so a very sparse random measurement matrix is defined as

rij ¼
ffiffi
s

p �
1 with probability 1=2s
0 with probability 1�1=s
�1 with probability 1=2s

8><
>: ð8Þ

In order to satisfy the Johnson–Lindenstrauss lemma, the
measurement matrix should be with s¼2 or s¼3 [23]. We can
note that the measurement matrix is very easy to compute and it
requires only a uniform random generator. In order to enhance the
separability, distinguished ability and adaptability at a fixed scale,
samples from this fixed scale are convolving with a set of rectangle
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filters at multiple scales. Each rectangular filter at a scale is defined

hp;qðx; yÞ ¼
1 1rxrp;1ryrq

0 otherwise

�
ð9Þ

where p and q are the width and the height of a rectangle filter,
respectively. Convolving an image patch with the rectangle filter at a
fixed scale is equivalent to computing the internal image characters
corresponding to this filter. Finally, we represent each filtered image as
a column vector in Rwh and then concatenate these vectors as a very
high-dimensional multi-scale image feature vector x. Then, a very
sparse matrix is adopted to project x onto a low-dimensional feature
vector v. In tracking process, the sparse matrix remains fixed in the

whole tracking process and it is computed once in the original stage.
Therefore, a low-dimensional compressive features v can be efficiently
computed and it is used to represent an object.

3. Our proposed method

3.1. Framework

Fig. 1 shows the basic flow of our proposed tracking algorithm.
The tracking problem is formulated as a ranking task. Firstly, we
assume that the locations in the first t frames have been obtained
by the CT tracker [10]. Let lðxni Þ denote the location of tracking
result at the ith frame where xni represents the sample. Then, we
collect these tracked results to form the object appearance model
set Sm ¼ fxn1; xn2;…; xni g; i¼ 1;2;…; t, and the corresponding graph is
taken as Gm. Secondly, for a new frame, we crop out a set of image
patches xr with N samples near the location lðxnt Þ with a search
radius at the current frame, i.e., xβ ¼ fx : J lðxÞ� lðxnt ÞJoβg. These
candidate image patches are collected to form a set of unlabeled
nodes, represented by, Su ¼ fxsþ1

1 ; xsþ1
2 ;…; xsþ1

i g; i¼ 1;2;…;N, and
the corresponding graph is taken as Gu. Thirdly, the candidate Gu is
combined with Gm to construct a graph G¼ Gm [ Gu, in which the
label yi¼1 if a node point is in Gm, and yi¼0 if a node point is in Gu.
The ranking score vector rn ¼ ½rnm; rnu� can be obtained by the
manifold ranking algorithm, where rnm is corresponding to Gm

and rnu is corresponding to Gu. Then, the tracking result is added
into Sm, while the other candidate samples are deleted. This
procedure continues to sample candidates and constructs a new
graph to obtain the largest ranking score as the tracking result
until the end of the image sequence.

Coke sequence

Tracked results Labeled nodes

Sample candidates

Anchor points

Fig. 2. Anchor points representation. For tracking, these tracked results (red circles) have the same appearance in several consecutive frames, so we can use a small amount
of data points to represent all labeled points. Moreover, candidate points (green and black circles) have also same appearance and they are presented by a small amount of
anchor points. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

#1 #2 #3

Appearance model 
(temporal relationship)

#s

Spatial relationship

Fig. 3. Temporal and spatial relationships. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Tracked results

Model nodes set Unlabeled nodes set

Current samplesSupport nodes set

Compute

Samples from the previous candidates with larger ranking score

Update set

Update set

= ( )

Construct graph

Fig. 4. The updating process of appearance model and the construction of
support set.
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3.2. Anchor points representation in our method

The most time consuming part of the manifold ranking algorithms
is to construct graph. In order to efficiently reconstruct the graph in the
proposed tracking method, we use an efficient manifold ranking
algorithm to compute the ranking score. In the efficient manifold
ranking algorithm, each data point on the manifold can be locally
approximated by a linear combination of its nearby anchor points.
Thus, we only need to construct an anchor graph, and then ranking
score can be estimated for each point as a weighted average of the
labels on anchors' ranking values.

In our method, the object has the same appearance in several
consecutive frames, so we can use a small amount of anchor points
to represent all labeled nodes as shown in Fig. 2. Moreover,
candidates sampled around the previous location also have the
same appearance information, so a small number of candidate
nodes can used to represent the most of candidate sample points
as shown in Fig. 2.

3.3. Appearance model updating process

As shown in Fig. 1, we can obtain the locations in the first t
frames by a CT tracker, and then to obtain the location of the
ðtþ1Þth frame by the manifold ranking algorithm. There exists an
obvious problem that the size of Sm will be very large if all tracked
results are added into the appearance model in each tracking
round, so the computation complexity will be very heavy. In
addition, the bad node impacts the performance of the appearance
model. To track the next frame, we need to update the appearance
model firstly. We compute the average ranking score of rnm

μrnm
¼
Xt
i ¼ 1

ðrnmÞi ð10Þ

where ðrnmÞi represents the score of the ith node in Sm. Then, we
compute the displacement error ei between the score of each node
in Sm and the average score

ei ¼ ‖ðrnmÞi�μrnm
‖2 ð11Þ

We delete the node that has the largest displacement error, and
then add the current tracking result xntþ1 into Sm. Thus, the number
of Sm will be t constantly. It is worth noting that the average
ranking score computed from the tracked results alleviates the
noise effects.

3.4. Support set construction

In our method, object appearance model Sm only reflects the
temporal relationship among consecutive frames, but it does not
take into account the immediately surrounding background. In the
tracking process, the context of a target in an image sequence
consists of the spatial context including the local background and
the temporal context including all appearances of the targets in
the previous frames. As shown in Fig. 3 (left), our object appear-
ance model Sm represents the temporal context in the previous
frames. In Fig. 3 (right), note that the object can be influenced by
its surrounding background, and there exists a correlation
between the object (denoted by red rectangle) and its surrounding
background (denoted by yellow rectangle). Therefore, in order to
make use of surrounding background information and provide as
much appearance information as possible for graph construction,
we establish a support set to describe spatial context. The spatial
context describes the relevance between the object and its
surrounding background in a small neighborhood region.

Supposed that, in tracking the ðtþ1Þth frame, we have obtained
the object location lðxntþ1Þ with ranking score, and the ranking

score of the current candidate samples is denoted by rnu. We select
s nodes from the candidate samples set Su to construct the support
set Ss. Ss is corresponding to the first sþ1 largest ranking scores
among all obtained rnu, and we then delete the largest one. The
graph corresponding to the support set is denoted by Gs. The
updating process of the appearance model and the construction of
the support set construction are shown in Fig. 4.

Algorithm 1. The proposed tracking method.

Input: Video frame f¼1:F
1. The first t frames are tracked by a CT tracker to construct an

object appearance model set
Sm ¼ fxn1; xn2;…; xni g

2. for f¼tþ1 to F do
3. Crop out a set of candidate samples as unlabeled set

Su by xβ ¼ fx : J lðxÞ� lðxnt ÞÞJoβg.
4. if f¼¼tþ1
5. Construct a graph G¼ Gm [ Gu and support set Ss.
6. Update model set Sm.
7. else
8. Construct a graph G¼ Gm [ Gs [ Gu.
9. Update model set Sm and support set Ss.
10. end if
11. The ith candidate sample that has the largest rank value in

all ru is taken as the object location in frame f and is
denoted by lf ðxnÞ, i.e., the i is selected by i¼ argmaxðrnuÞi.

12. end for
Output: Tracking results fl1ðxnÞ; l2ðxnÞ;⋯; lF ðxnÞg.

To track the ðtþ2Þ th frame, a graph G¼ Gm [ Gs [ Gu is con-
structed and the label yi¼1 if a node point is from Sm and Ss, while
yi¼0 if a node point is from Su. The ranking score matrix
rn ¼ ½rnm; rns ; rnu� can be obtained by an efficient manifold ranking
algorithm (see Section 2.2), where rnm, r

n
s , and rnu are corresponding

to Gm, Gs, Gu respectively. The tracking scheme is summarized in
Algorithm 1. Finally, the target in frame tþ2 is the sample with the
largest component in rnu, as the ith sample can be selected from Su and
computed by

i¼ argmax
i

ðrnuÞi; i¼ 1;2;…;N ð12Þ

where N is the number of candidate samples.

4. Experimental results and analysis

4.1. Experimental setup

We evaluate the proposed tracking method based on an
efficient manifold ranking algorithm and an object representation
with low-dimensional features using seven video sequences with
impacted factors including abrupt motion, cluttered background,

Table 1
Evaluated video sequences.

Sequences #Frames Challenging factors

Deer 71 Abrupt motion, background clutter
Coke 291 Abrupt motion, partial occlusion
Bolt 293 Partial occlusion, scale change
Stone 593 Partial occlusion, background clutter
Couple 140 Partial occlusion, abrupt motion, background clutter
Lemming 1336 Partial occlusion, abrupt motion, background clutter
DavidIndoor 252 Partial occlusion, illumination variation

T. Zhou et al. / Pattern Recognition 48 (2015) 2459–2473 2463



severe occlusion and appearance change (see Table 1). Fig. 5 shows
the caption of tracking different objects in video sequences. We
compare our proposed tracker with seven other state-of-the-art
methods including: L1 tracker (L1) [6], real-time compressive
tracking (CT) [10], multiple instance learning tracker (MIL) [9],
incremental visual tracking (IVT) [14], fragment tracker (Frag) [4],
weighted multiple instance learning tracker (WMIL) [24] and
locally orderless tracking (LOT) [25]. For fair comparison, we adopt
the source codes or binary codes provided by the authors with
tuned parameters for best performance. For some trackers invol-
ving randomness, we repeat the experimental results five times on
each sequence and obtain the averaged results.

In our experiments, the parameters are used in our algorithm as
follows. The dimensionality of the compressive feature is set to 200.
The first t frames are tracked by the CT method and t is set to 30. In the
CT method, we randomly select 45 positive samples and 50 negative
samples. The number of nodes in the support set is set s¼10.

4.2. Quantitative analysis

We perform experiments on seven publicly available standard
video sequences. As the ground truth, the center position of a
target in a sequence is labeled manually. This ground truth is
provided in Wu's work [26]. For quantitative analysis, we use
average center location errors as evaluation criteria to compare the
performance, and the pixel error in every frame is defined as
follows:

CLE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 �xÞ2þðy0 �yÞ2

q
ð13Þ

where ðx0; y0Þ represents the object position obtained by different
tracking methods, and (x,y) is the ground truth. The second
evaluated metric is the success rate [27], and the score in every
frame is defined as follows:

score¼ areaðROIT \ ROIGÞ
areaðROIT [ ROIGÞ

ð14Þ

where ROIT is the tracking bounding box and ROIG is the ground
truth bounding box. If the score is larger than 0.5 in one frame, the
tracking result is considered as a success. Table 2 reports the
center location error, where smaller CLE means more accurate
tracking results. In Table 2, each row represents the average center
location errors of the eight algorithms testing on a certain video
sequence. The number marked in bold indicates the best perfor-
mance in a certain testing sequence, and the number in italics
refers to the second best result. Table 3 reports the success rates,
where larger average scores mean more accurate results. From
Tables 2 and 3, we can see that our method achieves the best or
second best performance compared with L1, CT, MIL, WMIL, Frag,
IVT and LOT for most of the sequences. Moreover, we draw the
error curve according to Eq. (13) for each video sequence (Fig. 6).
In addition, Figs. 7–9 show the screen captures for some of the
video clips. More details of experiments are analyzed and dis-
cussed in the following subsections.

Table 3
Success rate (SR)(%). Bold fonts indicate the best performance while the Italic fonts
indicate the second best ones.

Sequence L1 CT MIL IVT Frag WMIL LOT Ours

Coke 13.1 50.2 72.2 15.8 3.5 44.8 13.7 79.4
Bolt 27.5 4.7 44.4 3.4 54.6 3.1 17.4 81.7
Deer 3.9 14.1 21.3 11.7 7.6 83.5 35.2 85.9
Stone 29.2 35.2 32.1 65.2 15.4 8.4 27.8 65.2
Couple 12.3 67.8 71.4 10.1 64.3 65.3 69.7 92.8
Lemming 3.9 74.8 53.5 17.8 13.4 24.4 84.5 82.1
DavidOutdoor 27.5 22.4 64.8 41.1 19.5 29.8 31.2 72.3

Average SR 16.8 38.5 51.4 23.9 25.5 37.1 40.0 79.9

Lemming Coke  DavidOutdoor

 Stone  CoupleDeer Bolt

Fig. 5. The caption of tracking different objects in video sequences. (a) Lemming, (b) Coke, (c) DavidOutdoor, (d) Deer, (e) Stone, (f) Couple, and (g) Bolt.

Table 2
Center location error (CLE). Bold fonts indicate the best performance while the
Italic fonts indicate the second best ones.

Sequence L1 CT MIL IVT Frag WMIL LOT Ours

Coke 85.3 42.0 26.9 70.5 124.8 76.9 42.5 21.6
Bolt 39.4 211.4 35.8 138.8 18.8 214.3 68.2 7.6
Deer 171.5 95.1 66.5 127.5 92.1 25.1 65.9 23.0
Stone 19.2 32.8 32.3 2.5 65.9 99.8 28.1 6.4
Couple 110.6 33.8 33.9 105.1 32.6 34.4 37.8 9.3
Lemming 184.9 26.3 25.9 93.4 149.1 96.9 19.9 24.3
DavidOutdoor 100.4 87.3 38.4 52.9 90.5 73.3 63.5 29.5

Average CLE 101.6 75.5 37.1 84.4 81.9 88.7 46.6 17.7
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Fig. 6. Error plots of all tested sequences for different tracking methods.

T. Zhou et al. / Pattern Recognition 48 (2015) 2459–2473 2465



4.3. Qualitative analysis

Partial occlusion: The objects suffer heavy or longtime partial
occlusion, scale change, deformation and rotation in sequences:
Bolt (Fig. 9(a)), Lemming (Fig. 8(b)), DavidOutdoor (Fig. 7(c)), Coke
(Fig. 7(a)). In the Bolt sequence, Fig. 9(a) demonstrates that our
tracking method performs well in terms of position and scale
when the objects undergo severe occlusion and deformation at
frames #112, #157 and #167, while the other methods including
IVT, CT, WMIL and L1 completely fail to track the objects in these
frames. This can be attributed to some reasons: (1) we can extract
discriminative features based on a very sparse matrix to separate
an object well from its background, and also object representation
with low-dimensional compressive features can preserve the
structure of original image space; and (2) the outstanding ability
of the manifold ranking algorithm is to discover the underlying
geometrical structure and the relevance between object appear-
ance and candidate samples. Thus, our tracker is more robust to
overcome tracking drift and abrupt motion. In the DavidOutdoor
sequence, our method and MIL perform better than other methods
at frames #193, #206 and #252. The other methods suffer from
sever drift and some of these methods completely fail to track.
Furthermore, our method performs more accurately than MIL at
frames #230 and #252. Thus, our method can handle occlusion
and it is not sensitive to partial occlusion since the manifold
ranking algorithm can measure the relevance between object

appearance and candidate samples. Furthermore, we can also see
the advantages of our tracking method in the Lemming and Coke
sequences (see Figs. 8(b) and 7(a)).

Abrupt motion and blur: The objects in Deer (Fig. 9(b)), Coke
(Fig. 7(a)), Couple (Fig. 7(b)) and Lemming (Fig. 8(b)) sequences
have abrupt motions. It is difficult to predict the location of a
tracked object when it undergoes an abrupt motion. As illustrated
in Fig. 9(b), when an object undergoes an in-plane rotation, all
evaluated algorithms except the proposed tracker do not track the
object well. We also see that the WMIL method can track the
object well except in frames #43 and #56. The CT method suffers
completely from drifts to the background at frames #7, #17, #39,
#43, #56, #60 and #68. In the Coke sequence, we can see that our
method perform better than all other evaluated algorithms (see all
shown frames in Fig. 8(a)). For the Couple sequence, our tracker
performs better than other methods whereas the WMIL, LOT and
MIL algorithms are able to track the objects in some frames. In the
Lemming sequence, only the CT and our method perform well at
frame #550, while the other algorithms fail to track the target
objects well. What is more, the Frag method suffers completely
from drift in the shown frames and it verifies that the Frag method
cannot adaptively adjust these changes, resulting in serious drifts.
We can also see that the LOT method can track the object well
except that there are few drifts in a couple of frames see frames
#550 and #1105). Blurry images exist in the Deer sequence (see
Fig. 9(b)), because a fast motion makes it difficult to track the

#55 #101 #223 #262

#313 #426 #495 #535

#49 #158 #279 #487

#550 #1096 #1105 #1126

L1 CT MIL IVT Frag WMIL LOT Ours

Fig. 7. Sampled tracking results for tested sequences of (a) Stone and (b) Lemming.
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target object. As shown in frames #56 and #71 of Fig. 9(a), the
proposed method can still track the object well compared with
other methods.

Background clutters: The trackers are easily confused when an
object is very similar to its background. Figs. 9(b), 7(b), 8(b) and 8

(a) demonstrate the tracking results in the Deer, Couple, Lemming
and Stone sequences with background clutters. Fig. 8(a) shows
that different trackers track a yellow cobblestone located among a
lot of similar stones. Thus, it is very difficult to distinguish the
object from its background and to keep tracking the object

#51 #134 #143

#173 #226 #247

#122

#203

#17 #55 #84 #95

#103 #109 #117 #135

L1 CT MIL IVT Frag WMIL LOT Ours

#26 #177#92 #193

#206 #214 #230 #252

Fig. 8. Sampled tracking results for tested sequences of (a) Coke, (b) Couple and (c) DavidOutdoor.
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correctly. Comparatively, our method and IVT exhibit a better
discriminative ability and outperform other methods at frames
#495 and #535. The MIL and WMIL trackers completely drift to
the background at frames #426, #495 and #535 and this verifies
that the selected features by the MIL and WMIL trackers are less
informative than our method. The Frag tracker has severe drifts at
all frames except frames #55 and #535 and is unable to handle a
large background clutter because its template is not updated
online. The CT method has severe drifts at frames #426, #495
and #535 because it only uses compressive features and the
Bayesian classifier is sensitive to background clutter.

In the Deer sequence, our method outperforms all other
methods in all given frames. In the Lemming sequence, the L1
tracker completely drifts to the background at all given frames and
this verifies that sparsity is not useful for tracking. The Frag, IVT, L1
methods suffer from severe drifts at frames #1105 and #1126 as
shown in Fig. 9(b). Meanwhile, CT performs well too at frames
#1105 and #1126, but creates a drift at frame #1096, because it is
sensitive to the background clutter and the abrupt motion. In the
Couple sequence, the IVT and L1 methods completely fail to track
the object at all shown frames, while the MIL, WMIL and CT
methods can track well in the first frame. However, they com-
pletely fail to track at other frames because they cannot effectively
distinguish the object from the background clutters.

4.4. Comparison our method with other classifiers

It should be noted that the proposed tracking algorithm is
significantly different from other classifiers such as support vector
machine method (SVM). The outstanding ability of the manifold
learning algorithm is to discover the underlying geometrical
structure and the relevance between different data in a data set.
To verify that the performance of our tracker outperforms the

performance of methods using a SVM classifier, we construct two
tracking methods using SVM. In Fig. 10(1), we assume the loca-
tions in the first t frames have been obtained by the CT tracker
shown in [10]. Then these tracked results are selected as positive
samples, while many image patches away from the current
location are selected as negative samples (see Fig. 10(1) for
details). In Fig. 10(2), we collect these image patches around the
current location as positive samples, and the image patches away
from the current location as negative samples.

In these experiments, we use the Haar features to represent the
object and the dimensionality of the compressive features is set to
200. The first t frames are tracked by the CT method and t is set to
30. Table 4 reports the center location error, where smaller CLE
means more accurate tracking results. From Table 4, we can see
that our method achieves the best performance compared with
SVM classifiers. Fig. 11 shows the screen captures for some of the
video clips. In the Bolt sequence, we can see that the two SVM
based methods completely fail to track the target object in frame
#200 and there are some tracking error in frames #130 and #130.
In the DavidOutdoor and Lemming sequences, our tracker per-
forms better than other methods.

4.5. Tracking with different numbers of labeled and unlabeled nodes

We discuss the effect of the proposed tracking method against
different numbers of labeled and unlabeled nodes. In our method,
the tracked results and the support set are regarded as labeled
nodes, while all candidates sampled around the location in the
previous frame are regarded as unlabeled nodes. To sample
candidates, we crop out a set of image patches xr with N samples
near the location in previous frame with a search radius β at the
current frame, i.e., xβ ¼ fx : J lðxÞ� lðxnt ÞJoβg. The parameter β is
related to target's motion speed and represents the radius of

L1 CT MIL IVT Frag WMIL LOT Ours

Fig. 9. Sampled tracking results for tested sequences of (a) Bolt and (b) Deer.
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search window. The radius value must be large if the object moves
quickly between the consecutive frames. Moreover, the larger the
radius is, the bigger the number of candidates is.

Tables 5 and 6 report that the center location errors against
different numbers of labeled and unlabeled nodes on Coke and
DavidOutdoor sequences, respectively. In Tables 5 and 6, L is the
number of labeled nodes and β is the search radius. As indicated in
Table 5, our tracker can obtain better performance when 40 or 50
labeled nodes are selected and β is set to around 20. These labeled
nodes can construct the appearance model adequately, and the
manifold ranking algorithm can discover the underlying geome-
trical structure and the relevance between object appearance and
candidate samples.

However, tracking performance is a bit sensitive to the number
of labeled nodes, as labeled nodes include these tracked results of
the CT tracker and the support set. If there are tracking drifts in the
first t frames using the CT tracker, these labeled nodes cannot
effectively model the appearance information. As a result, it will
bring the accumulated error as shown in Tables 5 and 6.

In order to further analyze the effect of the number of labeled
nodes, we set a fixed search radius to compare against different

numbers of labeled nodes. Fig. 12 shows the center location errors
with different numbers of labeled nodes under a fixed search
radius. As shown in Fig. 12, our tracker has better performance
with 40 labeled nodes in all the shown sequences. There are some
big tracking errors for some numbers of labeled nodes because of
the original tracked results.

Overall, we usually select 40 labeled nodes including the
tracked results in the first 30 frames and the support set. On one
hand, the labeled node set can effectively construct an object
appearance model. On the other hand, it can the accumulated
error when using only the tracked results for the first 30 frames. In
our future work, we will use other robust tracking methods to
obtain the locations in the first t frames. Moreover, we improve to
reduce the sensitiveness to the labeled nodes.

4.6. Complexity analysis

The most time consuming part of the proposed tracking
algorithms is to construct the graph. In the original manifold
ranking algorithm, it usually uses kNN graph with its good ability
to capture the local structure of the data. But the construction cost
for kNN graph is Oðkn2Þ, which is very complex in large scale
situations. In our method, the inversion computation part has
been changed from an n� n matrix to a d� d matrix. If d≪n, this
change can significantly speed up the calculation of manifold
ranking, which is very important for real-time object tracking. As
a result, the efficient manifold ranking algorithm has a complexity
Oðdnþd3Þ. Due to a low complexity for computing the ranking
function rn, we can reconstruct the graph in each tracking round
efficiently.

……

#1 #2 #3 #s

Positive samples Negative samples

Negative samplesPositive samples

(1) 

(2) 

Fig. 10. Two sampling methods using SVM classifier. Top: the tracked results are selected as positive samples, while many image patches away from the current location are
selected as negative samples (SVM(a)); bottom: the image patches around the current location are collected as positive samples, and the patches away from the current
location as negative samples (SVM(b)).

Table 4
Center location error (CLE) for comparing our method with SVM classifiers.

Methods Deer Stone Coke Bolt Couple Lemming DavidOutdoor

SVM(a) 97.1 82.4 56.5 81.8 33.4 162.1 68.7
SVM(b) 60.2 68.9 86.1 33.4 18.9 165.6 67.9
Ours 23.0 6.4 23.9 7.6 9.3 24.3 29.5
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SVM(a) SVM(b) Ours

Fig. 11. Comparison our tracking method with SVM classifiers (a) Bolt (b) DavidOutdoor (c) Lemming.

Table 5
Comparison of center location errors against different numbers of labeled and unlabeled nodes on Coke sequence.

L β

13 14 15 16 17 18 19 20 21 22 23 24 25

20 72.7 81.4 80.1 71.4 80.8 79.8 75.0 81.5 135.4 131.6 76.8 76 146.6
30 42.2 65.3 37.5 37.9 40.3 53.3 39.5 43.0 38.5 37.5 60.5 43.6 129.2
40 162.1 36.6 32.7 33.2 33.1 29.4 37.0 21.6 34.3 33.3 36.4 44.1 35.6
50 41.0 27.1 20.2 42.1 37.4 21.5 35.3 31.8 31.8 39.2 38.1 39.5 40.2
60 136.1 49.3 38.1 37.0 33,9 39.5 33.5 32.8 36.7 36.3 34.5 38.4 34.9
70 27.4 31.7 28.6 32.8 132.7 29.9 34.0 35.2 36.3 34.6 37.9 36.1 35.2
80 21.9 33.5 37.8 35.2 33.9 35.2 33.1 33.8 34.7 38.9 35.8 34.9 35.3
90 40.3 56.2 35.6 33.2 21.7 32.9 36.4 33.4 32.7 32.0 32.1 31.0 36.1

100 27.5 31.4 34.3 48.0 28.1 34.3 32.6 33.9 31.5 32.3 29.6 37.2 36.0

Table 6
Comparison of center location errors against different numbers of labeled and unlabeled nodes on DavidOutdoor sequence.

L β

13 14 15 16 17 18 19 20 21 22 23 24 25

20 110.0 68.7 87.1 108.7 108.6 32.6 77.1 67.7 35.8 88.1 88.9 71.6 90.5
30 30.1 30.9 79.9 86.4 73.7 84.9 91.1 79.6 85.2 85.8 67.5 89.5 32.7
40 66.8 105.8 88.4 32.6 83.8 31.2 33.2 29.5 32.7 41.4 33.0 92.4 86.9
50 65.7 68.3 67.6 67.7 92.8 31.5 85.9 33.0 85.3 33.5 32.7 32.0 32.9
60 103.7 66.4 65.6 66.7 30.9 32.8 33.0 34.1 32.2 32.6 31.9 31.8 32.5
70 57.2 85.4 97.3 93.1 91.7 33.9 32.3 33.5 33.3 32.0 32.3 32.6 32.9
80 66.9 68.9 82.8 82.9 92.1 74.4 75.2 33.6 32.8 31.9 32.9 32.8 32.5
90 66.4 69.6 68.3 69.4 105.6 71.8 70.2 32.5 93.0 72.3 33.0 31.6 32.1

100 68.7 70.7 72.9 68.4 74.6 94.7 79.5 31.3 31.5 92.8 91.5 93.1 31.8
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For IVT method, the computation involves matrix–vector multi-
plication and the computation complexity is O(dk). The computa-
tion complexity of L1 tracker using LASSO algorithm is Oðd2þdkÞ.
The computation complexity of the CT tracker using random
projection to extract features is O(cn). The computational load of
our method is mainly to extract features and construct a graph,
and the complexity is Oðcnþdnþd3Þ, where c is the number of
nonzero entries in each row of projection matrix R.

In order to compare the detailed computational time of our
tracker with other tracking methods, we test different trackers
using MATLAB on an i3 3.20 GHz machine with 4 GB RAM. Then,
all trackers are implemented on different video sequences, the
whole running time is stored on each sequence, and then we can
obtain the frames per second (FPS) at the current sequence.
Finally, we report the average FPS from the all test sequences in
Table 7.

4.7. Discussion

As shown in our experiments, our method can address these
factors including abrupt motion, cluttered background and occlu-
sion more effectively. The reasons are as follows. (1) We can
extract discriminative features based on a very sparse matrix to
separate an object well from its background, and the object
representation with low-dimensional compressive features can
preserve the structure of original image space. (2) The outstanding
ability of the manifold ranking algorithm is to discover the
underlying geometrical structure and the relevance between
object appearance and candidate samples. (3) Our method com-
bines temporal and spatial context information for tracking, and it
is very insensitive to multiple factors. Thus, our tracker can obtain
favorable performance.

However, our proposed method may fail when an out-of-plane
rotation and an abrupt motion occur in the current sequence (see
Fig. 13). Fig. 13(a) shows an out-of-plane rotation and an abrupt
motion after #75. Our method drifts away the ground truth
because the appearance model cannot match well between the
object model and the candidates, and it cannot distinguish the
object from the changed background. Moreover, our method is
sensitive when there exists a complex background and when there
exists similar appearance information between the object and the
non-objects in a sequence (Fig. 13(b)). Therefore, our method
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Fig. 12. Comparison of center location errors against different numbers of labeled nodes under a fixed search radius.

Table 7
Comparison with average FPS.

Algorithm L1 CT MIL IVT WMIL LOT Ours

Average FPS 1.5 54.3 15.2 26.1 32.4 2.7 9.4
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cannot distinguish an object from background clutters in the
above mentioned two cases.

Overall, our method performs favorably against the other state-
of-the-art tracking methods in the challenge sequences.

5. Conclusions

This paper has proposed a novel framework named manifold
ranking based visual tracking. The algorithm was initially proposed to
rank data along their manifold, and has been widely applied in
information retrieval and shown to have excellent performance and
feasibility on a variety of data types. In order to address the short-
comings of original manifold ranking in graph reconstruction and
heavy computation load, we adopt the efficient manifold ranking
algorithm. The ability for efficiently constructing a graph is more
applicable for tracking problem. What is more, we adopt non-
adaptive random projections to preserve the structure of original
image space, and a very sparse measurement matrix is used to
efficiently extract compressive features for object representation.
Furthermore, our method exploits both temporal and spatial context
information for tracking, and is very insensitive to background clutters
and appearance change. Experiments on some challenging video
sequences have demonstrated the superiority of our proposed method
to seven state-of-the-art ones in terms of accuracy and robustness.
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